論文の概要: 3D Can Be Explored In 2D: Pseudo-Label Generation for LiDAR Point Clouds Using Sensor-Intensity-Based 2D Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2505.03300v1
- Date: Tue, 06 May 2025 08:31:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-07 18:50:11.263352
- Title: 3D Can Be Explored In 2D: Pseudo-Label Generation for LiDAR Point Clouds Using Sensor-Intensity-Based 2D Semantic Segmentation
- Title(参考訳): センサ強度に基づく2次元セマンティックセマンティックセグメンテーションによるLiDAR点雲の擬似ラベル生成
- Authors: Andrew Caunes, Thierry Chateau, Vincent Frémont,
- Abstract要約: そこで我々は,3次元セマンティックセマンティックセマンティクスパイプラインを導入し,アライメントシーンと最先端2次元セマンティクス手法を利用した。
本手法は,センサ強度で色付けされたLiDARスキャンから2次元ビューを生成し,これらのビューに2次元セマンティックセマンティックセグメンテーションを適用した。
分割された2D出力は3Dポイントにバックプロジェクターされ、単純な投票ベースの推定器が使用される。
- 参考スコア(独自算出の注目度): 3.192308005611312
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Semantic segmentation of 3D LiDAR point clouds, essential for autonomous driving and infrastructure management, is best achieved by supervised learning, which demands extensive annotated datasets and faces the problem of domain shifts. We introduce a new 3D semantic segmentation pipeline that leverages aligned scenes and state-of-the-art 2D segmentation methods, avoiding the need for direct 3D annotation or reliance on additional modalities such as camera images at inference time. Our approach generates 2D views from LiDAR scans colored by sensor intensity and applies 2D semantic segmentation to these views using a camera-domain pretrained model. The segmented 2D outputs are then back-projected onto the 3D points, with a simple voting-based estimator that merges the labels associated to each 3D point. Our main contribution is a global pipeline for 3D semantic segmentation requiring no prior 3D annotation and not other modality for inference, which can be used for pseudo-label generation. We conduct a thorough ablation study and demonstrate the potential of the generated pseudo-labels for the Unsupervised Domain Adaptation task.
- Abstract(参考訳): 自律運転とインフラストラクチャ管理に不可欠な3D LiDARポイントクラウドのセマンティックセグメンテーションは、広範な注釈付きデータセットを必要とする教師付き学習によって達成され、ドメインシフトの問題に直面している。
そこで本研究では,アライメントシーンと最先端の2Dセグメンテーション手法を活用する新しい3Dセグメンテーションパイプラインを提案する。
提案手法は,センサー強度で色付けされたLiDARスキャンから2次元ビューを生成し,カメラ領域事前学習モデルを用いて2次元セマンティックセマンティックセグメンテーションを適用した。
分割された2D出力は3Dポイントにバックプロジェクションされ、投票ベースの単純な推定器が各3Dポイントに関連付けられたラベルをマージする。
我々の主な貢献は、3Dセマンティックセグメンテーションのためのグローバルパイプラインであり、事前の3Dアノテーションは必要とせず、推論の他のモダリティも必要とせず、擬似ラベル生成に使用できる。
本研究は、教師なしドメイン適応タスクにおいて生成された擬似ラベルの可能性について、徹底的なアブレーション研究を行い、その可能性を実証する。
関連論文リスト
- Weakly Supervised 3D Object Detection via Multi-Level Visual Guidance [72.6809373191638]
本稿では,3次元ラベルを必要とせずに2次元ドメインと3次元ドメイン間の制約を活用できるフレームワークを提案する。
具体的には、LiDARと画像特徴をオブジェクト認識領域に基づいて整列する特徴レベルの制約を設計する。
第二に、出力レベルの制約は、2Dと投影された3Dボックスの推定の重なりを強制するために開発される。
第3に、トレーニングレベルの制約は、視覚データと整合した正確で一貫した3D擬似ラベルを生成することによって利用される。
論文 参考訳(メタデータ) (2023-12-12T18:57:25Z) - Cross-modal & Cross-domain Learning for Unsupervised LiDAR Semantic
Segmentation [82.47872784972861]
対象領域における3次元LiDARセマンティックセマンティックセグメンテーション(DLSS)のラベル付けコストを軽減するため、ペア化された2次元画像と3次元LiDARデータに対して、クロスモーダルドメイン適応について検討した。
本稿では,セマンティックアノテーションを持つ2次元データセットとペアだが注釈のない2次元画像と3次元LiDARデータ(ターゲット)が利用できる新しい3DLSS設定について検討する。
このシナリオで3DLSSを実現するために,クロスモーダル・クロスドメイン学習(CoMoDaL)を提案する。
論文 参考訳(メタデータ) (2023-08-05T14:00:05Z) - Multi-View Representation is What You Need for Point-Cloud Pre-Training [22.55455166875263]
本稿では,事前学習した2次元ネットワークを利用して3次元表現を学習するポイントクラウド事前学習手法を提案する。
我々は,新しい2次元知識伝達損失の助けを借りて,3次元特徴抽出ネットワークを訓練する。
実験結果から,事前学習したモデルを様々な下流タスクに転送できることが判明した。
論文 参考訳(メタデータ) (2023-06-05T03:14:54Z) - Unleash the Potential of Image Branch for Cross-modal 3D Object
Detection [67.94357336206136]
画像分岐のポテンシャルを2つの側面から解き放つことを目的として,新しい3Dオブジェクト検出器UPIDetを提案する。
まず、UPIDetは正規化された局所座標写像推定と呼ばれる新しい2次元補助タスクを導入する。
第2に,イメージブランチのトレーニング目標から逆転する勾配によって,ポイントクラウドバックボーンの表現能力を向上できることを見出した。
論文 参考訳(メタデータ) (2023-01-22T08:26:58Z) - LWSIS: LiDAR-guided Weakly Supervised Instance Segmentation for
Autonomous Driving [34.119642131912485]
より巧妙なフレームワークであるLiDAR誘導弱監視インスタンス(LWSIS)を提示する。
LWSISは市販の3Dデータ、すなわちポイントクラウドと3Dボックスを2Dイメージインスタンスセグメンテーションモデルをトレーニングするための自然な弱い監督手段として使用している。
我々のLWSISは、訓練中のマルチモーダルデータの補完情報を利用するだけでなく、密集した2Dマスクのコストを大幅に削減します。
論文 参考訳(メタデータ) (2022-12-07T08:08:01Z) - Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene
Segmentation [48.677336052620895]
そこで本研究では,画素ごとの2Dセマンティックスとインスタンスラベルの取得を目的とした,新しい3D-to-2Dラベル転送手法であるPanoptic NeRFを提案する。
3D空間内での推論と2Dラベルへのレンダリングにより、我々の2Dセマンティクスとインスタンスラベルは、設計によって複数ビューに一貫性がある。
論文 参考訳(メタデータ) (2022-03-29T04:16:40Z) - 3D Guided Weakly Supervised Semantic Segmentation [27.269847900950943]
本稿では,スパース境界ボックスラベルを利用可能な3次元情報に組み込むことにより,弱教師付き2次元セマンティックセマンティックセマンティックセマンティクスモデルを提案する。
手動で2D-3Dセマンティックス(2D-3D-S)データセットのサブセットにバウンディングボックスをラベル付けし、2D-3D推論モジュールを導入し、正確なピクセルワイドセグメント提案マスクを生成する。
論文 参考訳(メタデータ) (2020-12-01T03:34:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。