論文の概要: 3D Guided Weakly Supervised Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2012.00242v1
- Date: Tue, 1 Dec 2020 03:34:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-01 08:03:58.102917
- Title: 3D Guided Weakly Supervised Semantic Segmentation
- Title(参考訳): セマンティックセグメンテーションの3Dガイド
- Authors: Weixuan Sun, Jing Zhang, Nick Barnes
- Abstract要約: 本稿では,スパース境界ボックスラベルを利用可能な3次元情報に組み込むことにより,弱教師付き2次元セマンティックセマンティックセマンティックセマンティクスモデルを提案する。
手動で2D-3Dセマンティックス(2D-3D-S)データセットのサブセットにバウンディングボックスをラベル付けし、2D-3D推論モジュールを導入し、正確なピクセルワイドセグメント提案マスクを生成する。
- 参考スコア(独自算出の注目度): 27.269847900950943
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pixel-wise clean annotation is necessary for fully-supervised semantic
segmentation, which is laborious and expensive to obtain. In this paper, we
propose a weakly supervised 2D semantic segmentation model by incorporating
sparse bounding box labels with available 3D information, which is much easier
to obtain with advanced sensors. We manually labeled a subset of the 2D-3D
Semantics(2D-3D-S) dataset with bounding boxes, and introduce our 2D-3D
inference module to generate accurate pixel-wise segment proposal masks. Guided
by 3D information, we first generate a point cloud of objects and calculate
objectness probability score for each point. Then we project the point cloud
with objectness probabilities back to 2D images followed by a refinement step
to obtain segment proposals, which are treated as pseudo labels to train a
semantic segmentation network. Our method works in a recursive manner to
gradually refine the above-mentioned segment proposals. Extensive experimental
results on the 2D-3D-S dataset show that the proposed method can generate
accurate segment proposals when bounding box labels are available on only a
small subset of training images. Performance comparison with recent
state-of-the-art methods further illustrates the effectiveness of our method.
- Abstract(参考訳): ピクセル単位でクリーンなアノテーションは、完全に教師付きセマンティックセグメンテーションのために必要です。
本稿では,3次元情報にスパースバウンディングボックスラベルを組み込んだ2次元セマンティクスセグメンテーションモデルを提案する。
手動で2D-3D Semantics(2D-3D-S)データセットのサブセットにバウンディングボックスをラベル付けし、2D-3D推論モジュールを導入し、正確なピクセルワイドセグメント提案マスクを生成する。
3次元情報に導かれ,まず物体の点群を生成し,各点に対する対象性確率スコアを計算する。
次に,2次元画像にオブジェクトの確率を持つ点雲を投影し,さらにセグメントの提案を改良し,擬似ラベルとして扱い,意味的セグメンテーションネットワークを訓練する。
本手法は上記のセグメント提案を徐々に洗練するために再帰的に機能する。
2d-3d-sデータセットの広範な実験結果から,学習画像のごく一部でのみバウンディングボックスラベルが使用可能な場合に,提案手法が正確なセグメント提案を生成できることが確認された。
近年の最先端手法との比較により,本手法の有効性がさらに示唆された。
関連論文リスト
- SA3DIP: Segment Any 3D Instance with Potential 3D Priors [41.907914881608995]
本稿では,SA3DIPを提案する。SA3DIPは,任意の3Dインスタンスを,潜在的3Dプライオリティを利用してセグメント化するための新しい手法である。
具体的には,幾何学的およびテクスチャ的先行性の両方に基づいて,相補的な3Dプリミティブを生成する。
一方,3次元検出器を用いて3次元空間からの補足制約を導入し,さらなるマージプロセスの導出を行う。
論文 参考訳(メタデータ) (2024-11-06T10:39:00Z) - Bayesian Self-Training for Semi-Supervised 3D Segmentation [59.544558398992386]
3Dセグメンテーションはコンピュータビジョンの中核的な問題である。
完全に教師されたトレーニングを採用するために、3Dポイントクラウドを密にラベル付けすることは、労働集約的で高価です。
半教師付きトレーニングは、ラベル付きデータの小さなセットのみを付与し、より大きなラベル付きデータセットを伴って、より実用的な代替手段を提供する。
論文 参考訳(メタデータ) (2024-09-12T14:54:31Z) - Zero-Shot Dual-Path Integration Framework for Open-Vocabulary 3D Instance Segmentation [19.2297264550686]
Open-vocabulary 3Dのインスタンスセグメンテーションは、従来のクローズドボキャブラリーメソッドを超越する。
我々は、Zero-Shot Dual-Path Integration Frameworkを導入し、3Dと2Dの両方のモダリティの貢献を等しく評価する。
筆者らのフレームワークは,ゼロショット方式で事前学習したモデルを利用しており,モデル非依存であり,目に見えるデータと目に見えないデータの両方において優れた性能を示す。
論文 参考訳(メタデータ) (2024-08-16T07:52:00Z) - Label-Efficient 3D Brain Segmentation via Complementary 2D Diffusion Models with Orthogonal Views [10.944692719150071]
相補的な2次元拡散モデルを用いた新しい3次元脳分割法を提案する。
私たちのゴールは、個々の主題に対して完全なラベルを必要とせずに、信頼性の高いセグメンテーション品質を達成することです。
論文 参考訳(メタデータ) (2024-07-17T06:14:53Z) - DatasetNeRF: Efficient 3D-aware Data Factory with Generative Radiance Fields [68.94868475824575]
本稿では,無限で高品質な3Dアノテーションを3Dポイントクラウドセグメンテーションとともに生成できる新しいアプローチを提案する。
我々は3次元生成モデルに先立って強力なセマンティクスを活用してセマンティクスデコーダを訓練する。
トレーニングが完了すると、デコーダは遅延空間を効率よく一般化し、無限のデータの生成を可能にする。
論文 参考訳(メタデータ) (2023-11-18T21:58:28Z) - PartSLIP: Low-Shot Part Segmentation for 3D Point Clouds via Pretrained
Image-Language Models [56.324516906160234]
一般化可能な3D部分分割は重要だが、ビジョンとロボティクスでは難しい。
本稿では,事前学習した画像言語モデルGLIPを利用して,3次元点雲の低ショット部分分割法を提案する。
我々は2Dから3Dへの豊富な知識を、ポイントクラウドレンダリングにおけるGLIPに基づく部分検出と新しい2D-to-3Dラベルリフトアルゴリズムにより転送する。
論文 参考訳(メタデータ) (2022-12-03T06:59:01Z) - Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene
Segmentation [48.677336052620895]
そこで本研究では,画素ごとの2Dセマンティックスとインスタンスラベルの取得を目的とした,新しい3D-to-2Dラベル転送手法であるPanoptic NeRFを提案する。
3D空間内での推論と2Dラベルへのレンダリングにより、我々の2Dセマンティクスとインスタンスラベルは、設計によって複数ビューに一貫性がある。
論文 参考訳(メタデータ) (2022-03-29T04:16:40Z) - Multi-Modality Task Cascade for 3D Object Detection [22.131228757850373]
多くの手法は2つのモデルを個別に訓練し、単純な特徴結合を用いて3Dセンサーデータを表現している。
本稿では,3次元ボックスの提案を利用して2次元セグメンテーション予測を改善する新しいマルチモードタスクカスケードネットワーク(MTC-RCNN)を提案する。
2段階の3次元モジュール間の2次元ネットワークを組み込むことで,2次元および3次元のタスク性能が大幅に向上することを示す。
論文 参考訳(メタデータ) (2021-07-08T17:55:01Z) - FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle
Detection [81.79171905308827]
3Dアノテーションを使わずに点雲中の車両を検出するためのフラストラム対応幾何推論(FGR)を提案する。
本手法は粗い3次元セグメンテーションと3次元バウンディングボックス推定の2段階からなる。
2Dバウンディングボックスとスパースポイントクラウドだけで、3D空間内のオブジェクトを正確に検出できます。
論文 参考訳(メタデータ) (2021-05-17T07:29:55Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
大規模運転シーンのLiDARセマンティックセマンティックセグメンテーションのための最先端の手法は、しばしば2D空間の点雲を投影して処理する。
3D-to-2Dプロジェクションの問題に取り組むための簡単な解決策は、3D表現を保ち、3D空間の点を処理することである。
我々は3次元シリンダー分割と3次元シリンダー畳み込みに基づくフレームワークをCylinder3Dとして開発し,3次元トポロジの関係と運転シーンの点雲の構造を利用する。
論文 参考訳(メタデータ) (2020-08-04T13:56:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。