Detecting Quishing Attacks with Machine Learning Techniques Through QR Code Analysis
- URL: http://arxiv.org/abs/2505.03451v1
- Date: Tue, 06 May 2025 11:47:13 GMT
- Title: Detecting Quishing Attacks with Machine Learning Techniques Through QR Code Analysis
- Authors: Fouad Trad, Ali Chehab,
- Abstract summary: The rise of QR code based phishing ("Quishing") poses a growing cybersecurity threat.<n>Existing detection methods predominantly focus on URL analysis, which requires the extraction of the QR code payload.<n>We propose the first framework for quishing detection that directly analyzes QR code structure and pixel patterns without extracting the embedded content.
- Score: 2.8161155726745237
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rise of QR code based phishing ("Quishing") poses a growing cybersecurity threat, as attackers increasingly exploit QR codes to bypass traditional phishing defenses. Existing detection methods predominantly focus on URL analysis, which requires the extraction of the QR code payload, and may inadvertently expose users to malicious content. Moreover, QR codes can encode various types of data beyond URLs, such as Wi-Fi credentials and payment information, making URL-based detection insufficient for broader security concerns. To address these gaps, we propose the first framework for quishing detection that directly analyzes QR code structure and pixel patterns without extracting the embedded content. We generated a dataset of phishing and benign QR codes and we used it to train and evaluate multiple machine learning models, including Logistic Regression, Decision Trees, Random Forest, Naive Bayes, LightGBM, and XGBoost. Our best-performing model (XGBoost) achieves an AUC of 0.9106, demonstrating the feasibility of QR-centric detection. Through feature importance analysis, we identify key visual indicators of malicious intent and refine our feature set by removing non-informative pixels, improving performance to an AUC of 0.9133 with a reduced feature space. Our findings reveal that the structural features of QR code correlate strongly with phishing risk. This work establishes a foundation for quishing mitigation and highlights the potential of direct QR analysis as a critical layer in modern phishing defenses.
Related papers
- Client-Side Zero-Shot LLM Inference for Comprehensive In-Browser URL Analysis [0.0]
Malicious websites and phishing URLs pose an ever-increasing cybersecurity risk.<n>Traditional detection approaches rely on machine learning.<n>We propose a novel client-side framework for comprehensive URL analysis.
arXiv Detail & Related papers (2025-06-04T07:47:23Z) - Fooling the Decoder: An Adversarial Attack on Quantum Error Correction [49.48516314472825]
In this work, we target a basic RL surface code decoder (DeepQ) to create the first adversarial attack on quantum error correction.<n>We demonstrate an attack that reduces the logical qubit lifetime in memory experiments by up to five orders of magnitude.<n>This attack highlights the susceptibility of machine learning-based QEC and underscores the importance of further research into robust QEC methods.
arXiv Detail & Related papers (2025-04-28T10:10:05Z) - Efficient Phishing URL Detection Using Graph-based Machine Learning and Loopy Belief Propagation [12.89058029173131]
We propose a graph-based machine learning model for phishing URL detection.<n>We integrate URL structure and network-level features such as IP addresses and authoritative name servers.<n>Experiments on real-world datasets demonstrate our model's effectiveness by achieving F1 score of up to 98.77%.
arXiv Detail & Related papers (2025-01-12T19:49:00Z) - MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
We propose MASKDROID, a powerful detector with a strong discriminative ability to identify malware.
We introduce a masking mechanism into the Graph Neural Network based framework, forcing MASKDROID to recover the whole input graph.
This strategy enables the model to understand the malicious semantics and learn more stable representations, enhancing its robustness against adversarial attacks.
arXiv Detail & Related papers (2024-09-29T07:22:47Z) - DeepiSign-G: Generic Watermark to Stamp Hidden DNN Parameters for Self-contained Tracking [15.394110881491773]
DeepiSign-G is a versatile watermarking approach designed for comprehensive verification of leading DNN architectures, including CNNs and RNNs.
Unlike traditional hashing techniques, DeepiSign-G allows substantial metadata incorporation directly within the model, enabling detailed, self-contained tracking and verification.
We demonstrate DeepiSign-G's applicability across various architectures, including CNN models (VGG, ResNets, DenseNet) and RNNs (Text sentiment classifiers)
arXiv Detail & Related papers (2024-07-01T13:15:38Z) - Double Backdoored: Converting Code Large Language Model Backdoors to Traditional Malware via Adversarial Instruction Tuning Attacks [15.531860128240385]
This work investigates novel techniques for transitioning backdoors from the AI/ML domain to traditional computer malware.<n>We present MalInstructCoder, a framework designed to assess the cybersecurity vulnerabilities of instruction-tuned Code LLMs.<n>We conduct a comprehensive investigation into the exploitability of the code-specific instruction tuning process involving three state-of-the-art Code LLMs.
arXiv Detail & Related papers (2024-04-29T10:14:58Z) - PhishGuard: A Convolutional Neural Network Based Model for Detecting Phishing URLs with Explainability Analysis [1.102674168371806]
Phishing URL identification is the best way to address the problem.
Various machine learning and deep learning methods have been proposed to automate the detection of phishing URLs.
We propose a 1D Convolutional Neural Network (CNN) and trained the model with extensive features and a substantial amount of data.
arXiv Detail & Related papers (2024-04-27T17:13:49Z) - On the Security Risks of Knowledge Graph Reasoning [71.64027889145261]
We systematize the security threats to KGR according to the adversary's objectives, knowledge, and attack vectors.
We present ROAR, a new class of attacks that instantiate a variety of such threats.
We explore potential countermeasures against ROAR, including filtering of potentially poisoning knowledge and training with adversarially augmented queries.
arXiv Detail & Related papers (2023-05-03T18:47:42Z) - Adversarially-Aware Robust Object Detector [85.10894272034135]
We propose a Robust Detector (RobustDet) based on adversarially-aware convolution to disentangle gradients for model learning on clean and adversarial images.
Our model effectively disentangles gradients and significantly enhances the detection robustness with maintaining the detection ability on clean images.
arXiv Detail & Related papers (2022-07-13T13:59:59Z) - An Adversarial Attack Analysis on Malicious Advertisement URL Detection
Framework [22.259444589459513]
Malicious advertisement URLs pose a security risk since they are the source of cyber-attacks.
Existing malicious URL detection techniques are limited and to handle unseen features as well as generalize to test data.
In this study, we extract a novel set of lexical and web-scrapped features and employ machine learning technique to set up system for fraudulent advertisement URLs detection.
arXiv Detail & Related papers (2022-04-27T20:06:22Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
This work explores a deep learning approach to automatically learn the insecure patterns from code corpora.
Because code naturally admits graph structures with parsing, we develop a novel graph neural network (GNN) to exploit both the semantic context and structural regularity of a program.
arXiv Detail & Related papers (2021-09-07T21:24:36Z) - Noise-Response Analysis of Deep Neural Networks Quantifies Robustness
and Fingerprints Structural Malware [48.7072217216104]
Deep neural networks (DNNs) have structural malware' (i.e., compromised weights and activation pathways)
It is generally difficult to detect backdoors, and existing detection methods are computationally expensive and require extensive resources (e.g., access to the training data)
Here, we propose a rapid feature-generation technique that quantifies the robustness of a DNN, fingerprints' its nonlinearity, and allows us to detect backdoors (if present)
Our empirical results demonstrate that we can accurately detect backdoors with high confidence orders-of-magnitude faster than existing approaches (seconds versus
arXiv Detail & Related papers (2020-07-31T23:52:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.