Mitigating Backdoor Triggered and Targeted Data Poisoning Attacks in Voice Authentication Systems
- URL: http://arxiv.org/abs/2505.03455v1
- Date: Tue, 06 May 2025 11:52:12 GMT
- Title: Mitigating Backdoor Triggered and Targeted Data Poisoning Attacks in Voice Authentication Systems
- Authors: Alireza Mohammadi, Keshav Sood, Dhananjay Thiruvady, Asef Nazari,
- Abstract summary: We propose a unified defense framework that effectively addresses both BTA and TDPA.<n>Our framework integrates a frequency focused detection mechanism that flags covert pitch boosting and sound masking backdoor attacks in near real time.<n>Our framework reduces attack success rates to as low as five to fifteen percent while maintaining a recall rate of up to ninety five percent in recognizing TDPA.
- Score: 4.856070170902535
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Voice authentication systems remain susceptible to two major threats: backdoor triggered attacks and targeted data poisoning attacks. This dual vulnerability is critical because conventional solutions typically address each threat type separately, leaving systems exposed to adversaries who can exploit both attacks simultaneously. We propose a unified defense framework that effectively addresses both BTA and TDPA. Our framework integrates a frequency focused detection mechanism that flags covert pitch boosting and sound masking backdoor attacks in near real time, followed by a convolutional neural network that addresses TDPA. This dual layered defense approach utilizes multidimensional acoustic features to isolate anomalous signals without requiring costly model retraining. In particular, our PBSM detection mechanism can seamlessly integrate into existing voice authentication pipelines and scale effectively for large scale deployments. Experimental results on benchmark datasets and their compression with the state of the art algorithm demonstrate that our PBSM detection mechanism outperforms the state of the art. Our framework reduces attack success rates to as low as five to fifteen percent while maintaining a recall rate of up to ninety five percent in recognizing TDPA.
Related papers
- A Channel-Triggered Backdoor Attack on Wireless Semantic Image Reconstruction [12.368852420763782]
We propose a novel attack paradigm, termed Channel-Triggered Backdoor Attack (CT-BA)<n>We utilize channel gain with different fading distributions or channel noise with different power spectral densities as potential triggers.<n>We evaluate the robustness of CT-BA on a ViT-based Joint Source-Channel Coding (JSCC) model across three datasets.
arXiv Detail & Related papers (2025-03-31T09:17:10Z) - Mind the Gap: Detecting Black-box Adversarial Attacks in the Making through Query Update Analysis [3.795071937009966]
Adrial attacks can jeopardize the integrity of Machine Learning (ML) models.<n>We propose a framework that detects if an adversarial noise instance is being generated.<n>We evaluate our approach against 8 state-of-the-art attacks, including adaptive attacks.
arXiv Detail & Related papers (2025-03-04T20:25:12Z) - GCP: Guarded Collaborative Perception with Spatial-Temporal Aware Malicious Agent Detection [11.336965062177722]
Collaborative perception is vulnerable to adversarial message attacks from malicious agents.<n>This paper reveals a novel blind area confusion (BAC) attack that compromises existing single-shot outlier-based detection methods.<n>We propose Guarded Collaborative Perception framework based on spatial-temporal aware malicious agent detection.
arXiv Detail & Related papers (2025-01-05T06:03:26Z) - Toward Improving Synthetic Audio Spoofing Detection Robustness via Meta-Learning and Disentangled Training With Adversarial Examples [33.445126880876415]
We propose a reliable and robust spoofing detection system to filter out spoofing attacks instead of having them reach the automatic speaker verification system.
A weighted additive angular margin loss is proposed to address the data imbalance issue, and different margins has been assigned to improve generalization to unseen spoofing attacks.
We craft adversarial examples by adding imperceptible perturbations to spoofing speech as a data augmentation strategy, then we use an auxiliary batch normalization to guarantee that corresponding normalization statistics are performed exclusively on the adversarial examples.
arXiv Detail & Related papers (2024-08-23T19:26:54Z) - Let the Noise Speak: Harnessing Noise for a Unified Defense Against Adversarial and Backdoor Attacks [31.291700348439175]
Malicious data manipulation attacks against machine learning jeopardize its reliability in safety-critical applications.<n>We propose NoiSec, a reconstruction-based intrusion detection system.<n>NoiSec disentangles the noise from the test input, extracts the underlying features from the noise, and leverages them to recognize systematic malicious manipulation.
arXiv Detail & Related papers (2024-06-18T21:44:51Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
Federated learning (FL) is susceptible to poisoning attacks.
FreqFed is a novel aggregation mechanism that transforms the model updates into the frequency domain.
We demonstrate that FreqFed can mitigate poisoning attacks effectively with a negligible impact on the utility of the aggregated model.
arXiv Detail & Related papers (2023-12-07T16:56:24Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
This paper reveals the threats in this practical scenario that backdoor attacks can remain effective even after defenses.
We introduce the emphtoolns attack, which is resistant to backdoor detection and model fine-tuning defenses.
arXiv Detail & Related papers (2023-11-20T02:21:49Z) - Spatial-Frequency Discriminability for Revealing Adversarial Perturbations [53.279716307171604]
Vulnerability of deep neural networks to adversarial perturbations has been widely perceived in the computer vision community.
Current algorithms typically detect adversarial patterns through discriminative decomposition for natural and adversarial data.
We propose a discriminative detector relying on a spatial-frequency Krawtchouk decomposition.
arXiv Detail & Related papers (2023-05-18T10:18:59Z) - Improving the Adversarial Robustness for Speaker Verification by Self-Supervised Learning [95.60856995067083]
This work is among the first to perform adversarial defense for ASV without knowing the specific attack algorithms.
We propose to perform adversarial defense from two perspectives: 1) adversarial perturbation purification and 2) adversarial perturbation detection.
Experimental results show that our detection module effectively shields the ASV by detecting adversarial samples with an accuracy of around 80%.
arXiv Detail & Related papers (2021-06-01T07:10:54Z) - Adversarial Attacks and Mitigation for Anomaly Detectors of
Cyber-Physical Systems [6.417955560857806]
In this work, we present an adversarial attack that simultaneously evades the anomaly detectors and rule checkers of a CPS.
Inspired by existing gradient-based approaches, our adversarial attack crafts noise over the sensor and actuator values, then uses a genetic algorithm to optimise the latter.
We implement our approach for two real-world critical infrastructure testbeds, successfully reducing the classification accuracy of their detectors by over 50% on average.
arXiv Detail & Related papers (2021-05-22T12:19:03Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems.
This paper proposes a self-supervised adversarial training mechanism in the input space.
It provides significant robustness against the textbfunseen adversarial attacks.
arXiv Detail & Related papers (2020-06-08T20:42:39Z) - Temporal Sparse Adversarial Attack on Sequence-based Gait Recognition [56.844587127848854]
We demonstrate that the state-of-the-art gait recognition model is vulnerable to such attacks.
We employ a generative adversarial network based architecture to semantically generate adversarial high-quality gait silhouettes or video frames.
The experimental results show that if only one-fortieth of the frames are attacked, the accuracy of the target model drops dramatically.
arXiv Detail & Related papers (2020-02-22T10:08:42Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
Recent advancements in Artificial Intelligence (AI) have brought new capabilities to behavioural analysis (UEBA) for cyber-security.
In this paper, we present a solution to effectively mitigate this attack by improving the detection process and efficiently leveraging human expertise.
arXiv Detail & Related papers (2020-01-13T13:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.