Methods for quantum interference in atomic ensemble
- URL: http://arxiv.org/abs/2505.03459v1
- Date: Tue, 06 May 2025 12:00:09 GMT
- Title: Methods for quantum interference in atomic ensemble
- Authors: Niladri Ghorui, Sudip Mandal, Swarupananda Pradhan,
- Abstract summary: An experimental method for obtaining quantum interference signal in atomic ensemble using a bi-chromatic field is discussed.<n>We could simultaneously observe resonances due to population redistribution and quantum superposition between non-degenerate states.
- Score: 0.09320657506524146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An experimental method for obtaining quantum interference signal in atomic ensemble using a bi-chromatic field is discussed. Here, the quantum interference signal is obtained by scanning the magnetic field rather than conventional method of changing the frequency separation between the light fields. We could simultaneously observe resonances due to population redistribution and quantum superposition between non-degenerate states, which otherwise involves fundamentally different approaches. The method is implemented to Rubidium atoms in buffer gas filled as well as anti-relaxation coated atomic cells. Apart from phenomenological interest, the modified experimental procedure is found to be convenient for in-situ calibration of three axis magnetic coils. The investigation will be useful for high as well as low vector magnetic field sensing.
Related papers
- Transport-Induced Decoherence of the Entangled Triplet Exciton Pair [0.0]
The fluorescence quantum beats caused by quantum interference upon triplet-triplet recombination are predicted as a function of hopping time and magnetic field based on a Monte Carlo analysis.<n>It is possible to have complete global decoherence and suppression of fluorescence quantum beats in the limit of zero magnetic field, and to have quantum beats that decay at different rates depending on magnetic field strength.
arXiv Detail & Related papers (2025-07-31T17:55:47Z) - Multipassage Landau-Zener tunneling oscillations in transverse/longitudinal dual dressing of atomic qubits [31.874825130479174]
We investigate the time evolution of a non-resonant dressed-atom qubit in an XZ original configuration.<n>The experiments are performed in rubidium and caesium atomic magnetometers.
arXiv Detail & Related papers (2025-06-03T21:10:00Z) - Detecting quantum vacuum fluctuations of the electromagnetic field [3.5507288996708097]
We estimate the magnitude of the frequency shift using parameters from a single-electron cyclotron experiment.
We suggest a possible route to detecting vacuum-generated quantum coherences.
arXiv Detail & Related papers (2024-04-16T10:48:12Z) - Quantum electrodynamics of lossy magnetodielectric samples in vacuum: modified Langevin noise formalism [55.2480439325792]
We analytically derive the modified Langevin noise formalism from the established canonical quantization of the electromagnetic field in macroscopic media.
We prove that each of the two field parts can be expressed in term of particular bosonic operators, which in turn diagonalize the electromagnetic Hamiltonian.
arXiv Detail & Related papers (2024-04-07T14:37:04Z) - All-optical measurement of magnetic fields for quantum gas experiments [0.0]
We present an all-optical method to measure and compensate for residual magnetic fields present in a cloud of ultracold atoms.
Our approach leverages the increased loss from the trapped atomic sample through electromagnetically induced absorption.
Modulating the excitation laser provides coherent sidebands, resulting in Lambda-type pump-probe scheme.
arXiv Detail & Related papers (2023-11-14T19:42:16Z) - Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry [45.73541813564926]
We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
arXiv Detail & Related papers (2023-09-25T18:00:03Z) - Maximum Entangled State in Ultracold Spin-1 Mixture [2.556187235290598]
We study the ground state properties of a spin-1 condensate mixture.
We develop a model to analyze the binary-coupled two-level system.
We estimate the feasibility of experimentally generating the heteronuclear many-body entanglement in the alkali-metal atomic mixture.
arXiv Detail & Related papers (2023-06-08T16:34:41Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Effect of Emitters on Quantum State Transfer in Coupled Cavity Arrays [48.06402199083057]
We study the effects of atoms in cavities which can absorb and emit photons as they propagate down the array.
Our model is equivalent to previously examined spin chains in the one-excitation sector and in the absence of emitters.
arXiv Detail & Related papers (2021-12-10T18:52:07Z) - Quantum susceptibilities in time-domain sampling of electric field
fluctuations [0.0]
We develop a microscopic quantum theory of the electro-optic process using an ensemble of non-interacting three-level systems.
We show that the quantum contributions can be substantial and might even dominate the total response.
In a complementary regime, electro-optic sampling can serve as a spectroscopic tool to study the pure quantum susceptibilities of materials.
arXiv Detail & Related papers (2021-03-13T13:22:34Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Photon Condensation and Enhanced Magnetism in Cavity QED [68.8204255655161]
A system of magnetic molecules coupled to microwave cavities undergoes the equilibrium superradiant phase transition.
The effect of the coupling is first illustrated by the vacuum-induced ferromagnetic order in a quantum Ising model.
A transmission experiment is shown to resolve the transition, measuring the quantum electrodynamical control of magnetism.
arXiv Detail & Related papers (2020-11-07T11:18:24Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z) - Optical Magnetometer: Quantum Resonances at pumping repetition rate of
1/n of the Larmor frequency [58.720142291102135]
Quantum sub-resonances at a repetition rate of $1/n$ of the Larmor frequency of the magnetic field inside the shield are experimentally observed and theoretically explained.
Investigations in single alkali atoms cells as well as mixed alkali atoms of K and Rb are presented.
arXiv Detail & Related papers (2020-02-20T09:14:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.