Small-Scale-Fading-Aware Resource Allocation in Wireless Federated Learning
- URL: http://arxiv.org/abs/2505.03533v1
- Date: Tue, 06 May 2025 13:41:59 GMT
- Title: Small-Scale-Fading-Aware Resource Allocation in Wireless Federated Learning
- Authors: Jiacheng Wang, Le Liang, Hao Ye, Chongtao Guo, Shi Jin,
- Abstract summary: This paper proposes a small-scale-fading-aware resource allocation strategy using a multi-agent reinforcement learning (MARL) framework.<n>We establish a one-step convergence bound of the FL algorithm and formulate the resource allocation problem as a decentralized partially observable Markov decision process.<n>In our framework, each client serves as an agent that dynamically determines spectrum and power allocations within each coherence time slot.
- Score: 27.931985523249352
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Judicious resource allocation can effectively enhance federated learning (FL) training performance in wireless networks by addressing both system and statistical heterogeneity. However, existing strategies typically rely on block fading assumptions, which overlooks rapid channel fluctuations within each round of FL gradient uploading, leading to a degradation in FL training performance. Therefore, this paper proposes a small-scale-fading-aware resource allocation strategy using a multi-agent reinforcement learning (MARL) framework. Specifically, we establish a one-step convergence bound of the FL algorithm and formulate the resource allocation problem as a decentralized partially observable Markov decision process (Dec-POMDP), which is subsequently solved using the QMIX algorithm. In our framework, each client serves as an agent that dynamically determines spectrum and power allocations within each coherence time slot, based on local observations and a reward derived from the convergence analysis. The MARL setting reduces the dimensionality of the action space and facilitates decentralized decision-making, enhancing the scalability and practicality of the solution. Experimental results demonstrate that our QMIX-based resource allocation strategy significantly outperforms baseline methods across various degrees of statistical heterogeneity. Additionally, ablation studies validate the critical importance of incorporating small-scale fading dynamics, highlighting its role in optimizing FL performance.
Related papers
- RESIST: Resilient Decentralized Learning Using Consensus Gradient Descent [11.22833419439317]
Empirical robustness risk (ERM) is a cornerstone of modern machine learning (ML)<n>This paper focuses on the man-in-the-middle (MITM) attack, which can cause models to deviate significantly from their intended ERM solutions.<n>We propose RESIST, an algorithm designed to be robust against adversarially compromised communication links.
arXiv Detail & Related papers (2025-02-11T21:48:10Z) - Heterogeneous Multi-Agent Reinforcement Learning for Distributed Channel Access in WLANs [47.600901884970845]
This paper investigates the use of multi-agent reinforcement learning (MARL) to address distributed channel access in wireless local area networks.<n>In particular, we consider the challenging yet more practical case where the agents heterogeneously adopt value-based or policy-based reinforcement learning algorithms to train the model.<n>We propose a heterogeneous MARL training framework, named QPMIX, which adopts a centralized training with distributed execution paradigm to enable heterogeneous agents to collaborate.
arXiv Detail & Related papers (2024-12-18T13:50:31Z) - Online Client Scheduling and Resource Allocation for Efficient Federated Edge Learning [9.451084740123198]
Federated learning (FL) enables edge devices to collaboratively train a machine learning model without sharing their raw data.
However, deploying FL over mobile edge networks with constrained resources such as power, bandwidth, and suffers from high training latency and low model accuracy.
This paper investigates the optimal client scheduling and resource allocation for FL over mobile edge networks under resource constraints and uncertainty.
arXiv Detail & Related papers (2024-09-29T01:56:45Z) - Learner Referral for Cost-Effective Federated Learning Over Hierarchical
IoT Networks [21.76836812021954]
This paper aided federated selection (LRef-FedCS), communications resource, and local model accuracy (LMAO) methods.
Our proposed LRef-FedCS approach could achieve a good balance between high global accuracy and reducing cost.
arXiv Detail & Related papers (2023-07-19T13:33:43Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
We propose a novel cloud radio access network (Cloud-RAN) based vertical FL system to enable fast and accurate model aggregation.
We characterize the convergence behavior of the vertical FL algorithm considering both uplink and downlink transmissions.
We establish a system optimization framework by joint transceiver and fronthaul quantization design, for which successive convex approximation and alternate convex search based system optimization algorithms are developed.
arXiv Detail & Related papers (2023-05-04T09:26:03Z) - Automated Federated Learning in Mobile Edge Networks -- Fast Adaptation
and Convergence [83.58839320635956]
Federated Learning (FL) can be used in mobile edge networks to train machine learning models in a distributed manner.
Recent FL has been interpreted within a Model-Agnostic Meta-Learning (MAML) framework, which brings FL significant advantages in fast adaptation and convergence over heterogeneous datasets.
This paper addresses how much benefit MAML brings to FL and how to maximize such benefit over mobile edge networks.
arXiv Detail & Related papers (2023-03-23T02:42:10Z) - Decentralized Federated Reinforcement Learning for User-Centric Dynamic
TFDD Control [37.54493447920386]
We propose a learning-based dynamic time-frequency division duplexing (D-TFDD) scheme to meet asymmetric and heterogeneous traffic demands.
We formulate the problem as a decentralized partially observable Markov decision process (Dec-POMDP)
In order to jointly optimize the global resources in a decentralized manner, we propose a federated reinforcement learning (RL) algorithm named Wolpertinger deep deterministic policy gradient (FWDDPG) algorithm.
arXiv Detail & Related papers (2022-11-04T07:39:21Z) - Multi-Resource Allocation for On-Device Distributed Federated Learning
Systems [79.02994855744848]
This work poses a distributed multi-resource allocation scheme for minimizing the weighted sum of latency and energy consumption in the on-device distributed federated learning (FL) system.
Each mobile device in the system engages the model training process within the specified area and allocates its computation and communication resources for deriving and uploading parameters, respectively.
arXiv Detail & Related papers (2022-11-01T14:16:05Z) - Performance Optimization for Variable Bitwidth Federated Learning in
Wireless Networks [103.22651843174471]
This paper considers improving wireless communication and computation efficiency in federated learning (FL) via model quantization.
In the proposed bitwidth FL scheme, edge devices train and transmit quantized versions of their local FL model parameters to a coordinating server, which aggregates them into a quantized global model and synchronizes the devices.
We show that the FL training process can be described as a Markov decision process and propose a model-based reinforcement learning (RL) method to optimize action selection over iterations.
arXiv Detail & Related papers (2022-09-21T08:52:51Z) - Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated
Split Learning [56.125720497163684]
We propose a hybrid federated split learning framework in wireless networks.
We design a parallel computing scheme for model splitting without label sharing, and theoretically analyze the influence of the delayed gradient caused by the scheme on the convergence speed.
arXiv Detail & Related papers (2022-09-02T10:29:56Z) - Generalized Federated Learning via Sharpness Aware Minimization [22.294290071999736]
We propose a general, effective algorithm, textttFedSAM, based on Sharpness Aware Minimization (SAM) local, and develop a momentum FL algorithm to bridge local and global models.
Empirically, our proposed algorithms substantially outperform existing FL studies and significantly decrease the learning deviation.
arXiv Detail & Related papers (2022-06-06T13:54:41Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
The paper investigates the general problem of resource allocation for mitigating channel fading effects in Free Space Optical (FSO) communications.
Under this framework, we propose two algorithms that solve FSO resource allocation problems.
arXiv Detail & Related papers (2020-07-27T17:38:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.