論文の概要: Multi-modal cascade feature transfer for polymer property prediction
- arxiv url: http://arxiv.org/abs/2505.03704v2
- Date: Wed, 07 May 2025 10:13:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-08 12:54:13.65997
- Title: Multi-modal cascade feature transfer for polymer property prediction
- Title(参考訳): 高分子特性予測のための多モードカスケード特性伝達
- Authors: Kiichi Obuchi, Yuta Yahagi, Kiyohiko Toyama, Shukichi Tanaka, Kota Matsui,
- Abstract要約: 高分子特性予測のための多モードカスケードモデルを提案する。
提案手法は,単一特徴量を用いた従来手法と比較して高い予測性能を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a novel transfer learning approach called multi-modal cascade model with feature transfer for polymer property prediction.Polymers are characterized by a composite of data in several different formats, including molecular descriptors and additive information as well as chemical structures. However, in conventional approaches, prediction models were often constructed using each type of data separately. Our model enables more accurate prediction of physical properties for polymers by combining features extracted from the chemical structure by graph convolutional neural networks (GCN) with features such as molecular descriptors and additive information. The predictive performance of the proposed method is empirically evaluated using several polymer datasets. We report that the proposed method shows high predictive performance compared to the baseline conventional approach using a single feature.
- Abstract(参考訳): 本稿では, 高分子特性予測のための多モードカスケードモデル (多モードカスケードモデル) と呼ばれる新しい伝達学習手法を提案する。
しかし,従来の手法では,各種類のデータを用いて予測モデルを構築することが多かった。
分子記述子や付加情報などの特徴をグラフ畳み込みニューラルネットワーク(GCN)を用いて化学構造から抽出した特徴と組み合わせることで,高分子の物性のより正確な予測を可能にする。
提案手法の予測性能を複数のポリマーデータセットを用いて実験的に評価した。
提案手法は,単一特徴量を用いた従来手法と比較して高い予測性能を示す。
関連論文リスト
- Multimodal machine learning with large language embedding model for polymer property prediction [2.525624865489335]
本稿では,高分子特性予測タスクに対して,単純で効果的なマルチモーダルアーキテクチャであるPolyLLMemを提案する。
PolyLLMemは、Llama 3によって生成されたテキスト埋め込みとUni-Mol由来の分子構造埋め込みを統合する。
その性能は、グラフベースのモデルやトランスフォーマーベースのモデルと同等であり、場合によってはそれ以上である。
論文 参考訳(メタデータ) (2025-03-29T03:48:11Z) - Compositional Representation of Polymorphic Crystalline Materials [56.80318252233511]
PCRLは,構成の確率論的モデリングを用いて,利用可能な構造情報から多型を抽出する手法である。
16のデータセットに対する広範囲な評価は、構成表現の学習におけるPCRLの有効性を示す。
論文 参考訳(メタデータ) (2023-11-17T20:34:28Z) - Quantifying & Modeling Multimodal Interactions: An Information
Decomposition Framework [89.8609061423685]
本稿では,入力モーダル性と出力タスクを関連付けた冗長性,特異性,シナジーの度合いを定量化する情報理論手法を提案する。
PID推定を検証するために、PIDが知られている合成データセットと大規模マルチモーダルベンチマークの両方で広範な実験を行う。
本研究では,(1)マルチモーダルデータセット内の相互作用の定量化,(2)マルチモーダルモデルで捉えた相互作用の定量化,(3)モデル選択の原理的アプローチ,(4)実世界のケーススタディの3つにその有用性を示す。
論文 参考訳(メタデータ) (2023-02-23T18:59:05Z) - TransPolymer: a Transformer-based language model for polymer property
predictions [9.04563945965023]
TransPolymerは、トランスフォーマーをベースとした、高分子特性予測のための言語モデルである。
ケミカル・アウェアネスを用いたポリマー・トークンーザは, ポリマー配列からの学習表現を可能にする。
論文 参考訳(メタデータ) (2022-09-03T01:29:59Z) - A graph representation of molecular ensembles for polymer property
prediction [3.032184156362992]
有機分子とは対照的に、ポリマーはよく定義された単一構造ではなく、類似した分子の集合体である。
本稿では,分子アンサンブルのグラフ表現と,高分子特性予測に適したグラフニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-05-17T20:31:43Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
分子最適化をスタイル伝達問題として定式化し、非並列データの2つのグループ間の内部差を自動的に学習できる新しい生成モデルを提案する。
毒性修飾と合成性向上という2つの分子最適化タスクの実験により,本モデルがいくつかの最先端手法を著しく上回ることを示した。
論文 参考訳(メタデータ) (2021-11-30T06:10:22Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z) - Few-Shot Graph Learning for Molecular Property Prediction [46.60746023179724]
分子特性予測の新しいモデルであるMeta-MGNNを提案する。
ラベルのない分子情報を利用するため、Meta-MGNNはさらに分子構造、属性ベースの自己監視モジュール、および自己注意のタスクウェイトを組み込む。
2つの公開マルチプロパティデータセットに関する広範な実験は、Meta-MGNNがさまざまな最先端のメソッドを上回っていることを示しています。
論文 参考訳(メタデータ) (2021-02-16T01:55:34Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。