論文の概要: Learning Survival Distributions with the Asymmetric Laplace Distribution
- arxiv url: http://arxiv.org/abs/2505.03712v2
- Date: Wed, 07 May 2025 14:59:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-08 12:54:13.661185
- Title: Learning Survival Distributions with the Asymmetric Laplace Distribution
- Title(参考訳): 非対称ラプラス分布を用いた生存分布の学習
- Authors: Deming Sheng, Ricardo Henao,
- Abstract要約: 非対称ラプラス分布(ALD)に基づくパラメトリックサバイバル解析法を提案する。
この分布は、平均、中央値、モード、変動、量子化といった一般的なイベントサマリーの閉形式計算を可能にする。
提案手法は, 精度, 識別, 校正の点でパラメトリックおよび非パラメトリックアプローチより優れていることを示す。
- 参考スコア(独自算出の注目度): 16.401141867387324
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Probabilistic survival analysis models seek to estimate the distribution of the future occurrence (time) of an event given a set of covariates. In recent years, these models have preferred nonparametric specifications that avoid directly estimating survival distributions via discretization. Specifically, they estimate the probability of an individual event at fixed times or the time of an event at fixed probabilities (quantiles), using supervised learning. Borrowing ideas from the quantile regression literature, we propose a parametric survival analysis method based on the Asymmetric Laplace Distribution (ALD). This distribution allows for closed-form calculation of popular event summaries such as mean, median, mode, variation, and quantiles. The model is optimized by maximum likelihood to learn, at the individual level, the parameters (location, scale, and asymmetry) of the ALD distribution. Extensive results on synthetic and real-world data demonstrate that the proposed method outperforms parametric and nonparametric approaches in terms of accuracy, discrimination and calibration.
- Abstract(参考訳): 確率的生存分析モデルは、一組の共変量からなる事象の将来の発生(時間)の分布を推定しようとする。
近年、これらのモデルでは、離散化による生存率の直接推定を避ける非パラメトリックな仕様が好まれている。
具体的には、教師付き学習を用いて、固定時間における個々の事象の確率や、固定確率における事象の確率を推定する。
非対称ラプラス分布(ALD)に基づくパラメトリックサバイバル解析法を提案する。
この分布は、平均、中央値、モード、変動、量子化といった一般的なイベントサマリーの閉形式計算を可能にする。
モデルは、ALD分布のパラメータ(位置、スケール、非対称性)を個人レベルで学習するための最大確率で最適化される。
提案手法は, 精度, 識別, キャリブレーションの点でパラメトリックおよび非パラメトリックアプローチより優れていることを示す。
関連論文リスト
- Rejection via Learning Density Ratios [50.91522897152437]
拒絶による分類は、モデルを予測しないことを許容する学習パラダイムとして現れます。
そこで我々は,事前学習したモデルの性能を最大化する理想的なデータ分布を求める。
私たちのフレームワークは、クリーンでノイズの多いデータセットで実証的にテストされます。
論文 参考訳(メタデータ) (2024-05-29T01:32:17Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
異種データを用いた因果推論のための協調的逆確率スコア推定器を提案する。
異質性の増加に伴うメタアナリシスに基づく手法に対して,本手法は有意な改善を示した。
論文 参考訳(メタデータ) (2024-04-24T09:04:36Z) - Transformer-based Parameter Estimation in Statistics [0.0]
パラメータ推定のための変換器に基づく手法を提案する。
数値法で必要とされる確率密度関数を知る必要さえない。
提案手法は,平均二乗誤差で測定した手法と類似あるいは良好な精度を達成できることが示されている。
論文 参考訳(メタデータ) (2024-02-28T04:30:41Z) - Sourcerer: Sample-based Maximum Entropy Source Distribution Estimation [5.673617376471343]
本稿では,最大エントロピー分布,すなわち可能な限り不確実性を維持することを優先する手法を提案する。
提案手法は,Sliced-Wasserstein距離を利用して,データセットとシミュレーションの差分を測定する。
提案手法の有用性を実証するために,何千もの単一ニューロン計測を用いた実験データセットから,Hodgkin-Huxleyモデルのパラメータのソース分布を推定する。
論文 参考訳(メタデータ) (2024-02-12T17:13:02Z) - Personalized Trajectory Prediction via Distribution Discrimination [78.69458579657189]
トラリミー予測は将来の力学のマルチモーダルな性質を捉えるジレンマと対立する。
本研究では,パーソナライズされた動作パターンを予測するDisDisDis(Disdis)手法を提案する。
本手法は,プラグイン・アンド・プレイモジュールとして既存のマルチモーダル予測モデルと統合することができる。
論文 参考訳(メタデータ) (2021-07-29T17:42:12Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
多変量予測分布の条件パラメータを非パラメトリックにモデル化したNatural Gradient Boosting (NGBoost) 手法を提案する。
提案手法は頑健で, 広範囲なチューニングを伴わず, 推定対象分布に対してモジュール構造であり, 既存の手法と比較して競争力がある。
論文 参考訳(メタデータ) (2021-06-07T17:44:49Z) - A likelihood approach to nonparametric estimation of a singular
distribution using deep generative models [4.329951775163721]
深部生成モデルを用いた特異分布の非パラメトリック推定の可能性について検討する。
我々は、インスタンスノイズでデータを摂動することで、新しい効果的な解が存在することを証明した。
また、より深い生成モデルにより効率的に推定できる分布のクラスを特徴付ける。
論文 参考訳(メタデータ) (2021-05-09T23:13:58Z) - Distributionally Robust Parametric Maximum Likelihood Estimation [13.09499764232737]
パラメトリックな名目分布に対して,最悪の場合のログロスを均一に最小化する,分布的に頑健な最大確率推定器を提案する。
我々の新しい頑健な推定器は、統計的整合性も享受し、回帰と分類の両方に有望な実験結果を提供する。
論文 参考訳(メタデータ) (2020-10-11T19:05:49Z) - Distributional Reinforcement Learning via Moment Matching [54.16108052278444]
ニューラルネットワークを用いて各戻り分布から統計量の有限集合を学習する手法を定式化する。
我々の手法は、戻り分布とベルマン目標の間のモーメントの全ての順序を暗黙的に一致させるものとして解釈できる。
Atariゲームスイートの実験により,本手法は標準分布RLベースラインよりも優れていることが示された。
論文 参考訳(メタデータ) (2020-07-24T05:18:17Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
変分分布とは異なる後部近似を用いて意思決定を行うことが示唆された。
これらの理論的な結果から,最適モデルに関するいくつかの近似的提案を学習することを提案する。
おもちゃの例に加えて,単細胞RNAシークエンシングのケーススタディも紹介する。
論文 参考訳(メタデータ) (2020-02-17T19:23:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。