論文の概要: Distributionally Robust Parametric Maximum Likelihood Estimation
- arxiv url: http://arxiv.org/abs/2010.05321v1
- Date: Sun, 11 Oct 2020 19:05:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-08 13:15:02.824074
- Title: Distributionally Robust Parametric Maximum Likelihood Estimation
- Title(参考訳): 分布ロバストなパラメトリック最大度推定
- Authors: Viet Anh Nguyen and Xuhui Zhang and Jose Blanchet and Angelos
Georghiou
- Abstract要約: パラメトリックな名目分布に対して,最悪の場合のログロスを均一に最小化する,分布的に頑健な最大確率推定器を提案する。
我々の新しい頑健な推定器は、統計的整合性も享受し、回帰と分類の両方に有望な実験結果を提供する。
- 参考スコア(独自算出の注目度): 13.09499764232737
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the parameter estimation problem of a probabilistic generative
model prescribed using a natural exponential family of distributions. For this
problem, the typical maximum likelihood estimator usually overfits under
limited training sample size, is sensitive to noise and may perform poorly on
downstream predictive tasks. To mitigate these issues, we propose a
distributionally robust maximum likelihood estimator that minimizes the
worst-case expected log-loss uniformly over a parametric Kullback-Leibler ball
around a parametric nominal distribution. Leveraging the analytical expression
of the Kullback-Leibler divergence between two distributions in the same
natural exponential family, we show that the min-max estimation problem is
tractable in a broad setting, including the robust training of generalized
linear models. Our novel robust estimator also enjoys statistical consistency
and delivers promising empirical results in both regression and classification
tasks.
- Abstract(参考訳): 本研究では,分布の自然指数系列を用いた確率的生成モデルのパラメータ推定問題を考察する。
この問題に対して、典型的な最大可能性推定器は、通常、限られた訓練サンプルサイズで過度に適合し、ノイズに敏感であり、下流での予測タスクでは不十分である。
これらの問題を緩和するために,パラメトリックなKulback-Leibler球上での最悪の対数損失をパラメトリックな名目分布で均一に最小化する分布的に頑健な極大推定器を提案する。
同じ自然指数族内の2つの分布間のクルバック・リーブラー偏差の解析式を活用することで、分極推定問題は一般化された線形モデルのロバストなトレーニングを含む広義の設定で引き出すことができることを示す。
我々の新しいロバスト推定器も統計的一貫性を享受し,回帰と分類のタスクにおいて有望な実証結果を提供する。
関連論文リスト
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
我々は、パラメトリックな$sqrt n $-rateで収束する、最も近い隣人の新しい修正とマッチング推定器を開発する。
我々は,非パラメトリック関数推定器は含まないこと,特に標本サイズ依存パラメータの平滑化には依存していないことを強調する。
論文 参考訳(メタデータ) (2024-07-11T13:28:34Z) - Doubly Robust Inference in Causal Latent Factor Models [12.116813197164047]
本稿では、多数の単位と結果を含む現代データ豊富な環境において、観測不能なコンファウンディングの下での平均処理効果を推定する新しい手法を提案する。
有限サンプル重み付けと保証を導出し、新しい推定器の誤差がパラメトリック速度で平均ゼロガウス分布に収束することを示す。
論文 参考訳(メタデータ) (2024-02-18T17:13:46Z) - Nonparametric logistic regression with deep learning [1.2509746979383698]
非パラメトリックロジスティック回帰では、クルバック・リーバーの発散は容易に発散できる。
余剰リスクを解析する代わりに、最大可能性推定器の一貫性を示すのに十分である。
重要な応用として、深層ニューラルネットワークによるNPMLEの収束率を導出する。
論文 参考訳(メタデータ) (2024-01-23T04:31:49Z) - Robust Gaussian Process Regression with Huber Likelihood [2.7184224088243365]
本稿では,ハマー確率分布として表される観測データの可能性を考慮した,ガウス過程フレームワークにおけるロバストなプロセスモデルを提案する。
提案モデルでは、予測統計に基づく重みを用いて、残差を拡大し、潜伏関数推定における垂直外れ値と悪レバレッジ点の影響を限定する。
論文 参考訳(メタデータ) (2023-01-19T02:59:33Z) - Wasserstein Distributionally Robust Estimation in High Dimensions:
Performance Analysis and Optimal Hyperparameter Tuning [0.0]
雑音線形測定から未知パラメータを推定するための分布的ロバストな推定フレームワークを提案する。
このような推定器の2乗誤差性能を解析する作業に着目する。
凸凹最適化問題の解法として2乗誤差を復元できることを示す。
論文 参考訳(メタデータ) (2022-06-27T13:02:59Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
ストリーミング$p$のサンプルから重み付き統計推定の課題を考察する。
そこで我々は,傾きの雑音に対して,よりニュアンスな条件下での傾きの傾きの低下を設計し,より詳細な解析を行う。
論文 参考訳(メタデータ) (2021-08-25T21:30:27Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
最小二乗法のような単純な方法でさえ、データが適応的に収集されるときの非正規な振る舞いを示すことができる。
我々は,これらの分布異常を少なくとも2乗推定で補正するオンラインデバイアス推定器のファミリーを提案する。
我々は,マルチアームバンディット,自己回帰時系列推定,探索による能動的学習などの応用を通して,我々の理論の有用性を実証する。
論文 参考訳(メタデータ) (2021-07-05T21:05:11Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z) - SUMO: Unbiased Estimation of Log Marginal Probability for Latent
Variable Models [80.22609163316459]
無限級数のランダム化トランケーションに基づく潜在変数モデルに対して、ログ境界確率の非バイアス推定器とその勾配を導入する。
推定器を用いてトレーニングしたモデルは、同じ平均計算コストに対して、標準的な重要度サンプリングに基づくアプローチよりも優れたテストセット確率を与えることを示す。
論文 参考訳(メタデータ) (2020-04-01T11:49:30Z) - Minimax Optimal Estimation of KL Divergence for Continuous Distributions [56.29748742084386]
Kullback-Leibler の同一および独立に分布するサンプルからの発散は、様々な領域において重要な問題である。
単純で効果的な推定器の1つは、これらのサンプル間の近辺 k に基づいている。
論文 参考訳(メタデータ) (2020-02-26T16:37:37Z) - Asymptotic Analysis of Sampling Estimators for Randomized Numerical
Linear Algebra Algorithms [43.134933182911766]
最小二乗問題に対するRandNLAサンプリング推定器の分布を導出する解析法を開発した。
AAMSE(Asymptotic Mean Squared Error)とEAMSE(Asymsymotic Mean Squared Error)に基づく最適なサンプリング確率の同定を行った。
提案手法は, サンプリングプロセスにおけるレバレッジの役割を明らかにするとともに, 実験により既存の手法よりも改善したことを示す。
論文 参考訳(メタデータ) (2020-02-24T20:34:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。