Learning Survival Distributions with the Asymmetric Laplace Distribution
- URL: http://arxiv.org/abs/2505.03712v2
- Date: Wed, 07 May 2025 14:59:57 GMT
- Title: Learning Survival Distributions with the Asymmetric Laplace Distribution
- Authors: Deming Sheng, Ricardo Henao,
- Abstract summary: We propose a parametric survival analysis method based on the Asymmetric Laplace Distribution (ALD)<n>This distribution allows for closed-form calculation of popular event summaries such as mean, median, mode, variation, and quantiles.<n>We show that the proposed method outperforms parametric and nonparametric approaches in terms of accuracy, discrimination and calibration.
- Score: 16.401141867387324
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Probabilistic survival analysis models seek to estimate the distribution of the future occurrence (time) of an event given a set of covariates. In recent years, these models have preferred nonparametric specifications that avoid directly estimating survival distributions via discretization. Specifically, they estimate the probability of an individual event at fixed times or the time of an event at fixed probabilities (quantiles), using supervised learning. Borrowing ideas from the quantile regression literature, we propose a parametric survival analysis method based on the Asymmetric Laplace Distribution (ALD). This distribution allows for closed-form calculation of popular event summaries such as mean, median, mode, variation, and quantiles. The model is optimized by maximum likelihood to learn, at the individual level, the parameters (location, scale, and asymmetry) of the ALD distribution. Extensive results on synthetic and real-world data demonstrate that the proposed method outperforms parametric and nonparametric approaches in terms of accuracy, discrimination and calibration.
Related papers
- DistPred: A Distribution-Free Probabilistic Inference Method for Regression and Forecasting [14.390842560217743]
We propose a novel approach called DistPred for regression and forecasting tasks.<n>We transform proper scoring rules that measure the discrepancy between the predicted distribution and the target distribution into a differentiable discrete form.<n>This allows the model to sample numerous samples in a single forward pass to estimate the potential distribution of the response variable.
arXiv Detail & Related papers (2024-06-17T10:33:00Z) - Rejection via Learning Density Ratios [50.91522897152437]
Classification with rejection emerges as a learning paradigm which allows models to abstain from making predictions.
We propose a different distributional perspective, where we seek to find an idealized data distribution which maximizes a pretrained model's performance.
Our framework is tested empirically over clean and noisy datasets.
arXiv Detail & Related papers (2024-05-29T01:32:17Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
We propose a collaborative inverse propensity score estimator for causal inference with heterogeneous data.
Our method shows significant improvements over the methods based on meta-analysis when heterogeneity increases.
arXiv Detail & Related papers (2024-04-24T09:04:36Z) - Transformer-based Parameter Estimation in Statistics [0.0]
We propose a transformer-based approach to parameter estimation.
It does not even require knowing the probability density function, which is needed by numerical methods.
It is shown that our approach achieves similar or better accuracy as measured by mean-square-errors.
arXiv Detail & Related papers (2024-02-28T04:30:41Z) - Sourcerer: Sample-based Maximum Entropy Source Distribution Estimation [5.673617376471343]
We propose an approach which targets the maximum entropy distribution, i.e., prioritizes retaining as much uncertainty as possible.<n>Our method is purely sample-based - leveraging the Sliced-Wasserstein distance to measure the discrepancy between the dataset and simulations.<n>To demonstrate the utility of our approach, we infer source distributions for parameters of the Hodgkin-Huxley model from experimental datasets with thousands of single-neuron measurements.
arXiv Detail & Related papers (2024-02-12T17:13:02Z) - Personalized Trajectory Prediction via Distribution Discrimination [78.69458579657189]
Trarimiy prediction is confronted with the dilemma to capture the multi-modal nature of future dynamics.
We present a distribution discrimination (DisDis) method to predict personalized motion patterns.
Our method can be integrated with existing multi-modal predictive models as a plug-and-play module.
arXiv Detail & Related papers (2021-07-29T17:42:12Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
We propose a Natural Gradient Boosting (NGBoost) approach based on nonparametrically modeling the conditional parameters of the multivariate predictive distribution.
Our method is robust, works out-of-the-box without extensive tuning, is modular with respect to the assumed target distribution, and performs competitively in comparison to existing approaches.
arXiv Detail & Related papers (2021-06-07T17:44:49Z) - A likelihood approach to nonparametric estimation of a singular
distribution using deep generative models [4.329951775163721]
We investigate a likelihood approach to nonparametric estimation of a singular distribution using deep generative models.
We prove that a novel and effective solution exists by perturbing the data with an instance noise.
We also characterize the class of distributions that can be efficiently estimated via deep generative models.
arXiv Detail & Related papers (2021-05-09T23:13:58Z) - Distributionally Robust Parametric Maximum Likelihood Estimation [13.09499764232737]
We propose a distributionally robust maximum likelihood estimator that minimizes the worst-case expected log-loss uniformly over a parametric nominal distribution.
Our novel robust estimator also enjoys statistical consistency and delivers promising empirical results in both regression and classification tasks.
arXiv Detail & Related papers (2020-10-11T19:05:49Z) - Distributional Reinforcement Learning via Moment Matching [54.16108052278444]
We formulate a method that learns a finite set of statistics from each return distribution via neural networks.
Our method can be interpreted as implicitly matching all orders of moments between a return distribution and its Bellman target.
Experiments on the suite of Atari games show that our method outperforms the standard distributional RL baselines.
arXiv Detail & Related papers (2020-07-24T05:18:17Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
We show that a posterior approximation distinct from the variational distribution should be used for making decisions.
Motivated by these theoretical results, we propose learning several approximate proposals for the best model.
In addition to toy examples, we present a full-fledged case study of single-cell RNA sequencing.
arXiv Detail & Related papers (2020-02-17T19:23:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.