論文の概要: Nonnegative Low-rank Matrix Recovery Can Have Spurious Local Minima
- arxiv url: http://arxiv.org/abs/2505.03717v1
- Date: Tue, 06 May 2025 17:43:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-07 18:50:11.502586
- Title: Nonnegative Low-rank Matrix Recovery Can Have Spurious Local Minima
- Title(参考訳): 非負の低ランクマトリックスリカバリはすっきりした局所性ミニマを持つ
- Authors: Richard Y. Zhang,
- Abstract要約: 古典的低ランク行列回復問題に対処する。
本稿では、基底真理が回復されたとき、良性非負性が共通のランクを維持し続けるかどうかを考察する。
しかし、驚くべきことに、この性質は部分的に保存されたケースにまで拡張されない。
- 参考スコア(独自算出の注目度): 10.787390511207683
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The classical low-rank matrix recovery problem is well-known to exhibit \emph{benign nonconvexity} under the restricted isometry property (RIP): local optimization is guaranteed to converge to the global optimum, where the ground truth is recovered. We investigate whether benign nonconvexity continues to hold when the factor matrices are constrained to be elementwise nonnegative -- a common practical requirement. In the simple setting of a rank-1 nonnegative ground truth, we confirm that benign nonconvexity holds in the fully-observed case with RIP constant $\delta=0$. Surprisingly, however, this property fails to extend to the partially-observed case with any arbitrarily small RIP constant $\delta\to0^{+}$, irrespective of rank overparameterization. This finding exposes a critical theoretical gap: the continuity argument widely used to explain the empirical robustness of low-rank matrix recovery fundamentally breaks down once nonnegative constraints are imposed.
- Abstract(参考訳): 古典的低ランク行列回復問題(英語版)は、制限等尺性(RIP)の下で「emph{benign nonconvexity}」を示すことがよく知られている。
因子行列が要素的に非負であることに制約されているとき、良性非凸性が引き続き持続するかどうかを考察する -- 共通の実践的要件である。
ランク 1 の非負基底真理の単純な設定では、良性非凸性は RIP 定数 $\delta=0$ の完全観測の場合において成り立つ。
しかし、驚くべきことに、この性質はランクの過度なパラメータ化にかかわらず、任意の小さな RIP 定数 $\delta\to0^{+}$ を持つ部分観測の場合にまで拡張できない。
この発見は批判的な理論的なギャップを露呈し、非負の制約が課されると、低ランク行列回復の経験的堅牢性を説明するために広く用いられる連続性論証が根本的に崩壊する。
関連論文リスト
- An Accelerated Alternating Partial Bregman Algorithm for ReLU-based Matrix Decomposition [0.0]
本稿では,非負行列上に補正されたスパース低ランク特性について検討する。
本稿では,クラスタリングと圧縮タスクに有用な構造を取り入れた新しい正規化項を提案する。
我々は、任意の$Lge 1$に対して常に持つ$L$-smoothプロパティを維持しながら、対応する閉形式解を導出する。
論文 参考訳(メタデータ) (2025-03-04T08:20:34Z) - Entrywise error bounds for low-rank approximations of kernel matrices [55.524284152242096]
切り抜き固有分解を用いて得られたカーネル行列の低ランク近似に対するエントリーワイド誤差境界を導出する。
重要な技術的革新は、小さな固有値に対応するカーネル行列の固有ベクトルの非局在化結果である。
我々は、合成および実世界のデータセットの集合に関する実証的研究により、我々の理論を検証した。
論文 参考訳(メタデータ) (2024-05-23T12:26:25Z) - The Inductive Bias of Flatness Regularization for Deep Matrix
Factorization [58.851514333119255]
この研究は、ディープ線形ネットワークにおけるヘッセン解の最小トレースの帰納バイアスを理解するための第一歩となる。
測定値の標準等尺性(RIP)が1より大きいすべての深さについて、ヘッセンのトレースを最小化することは、対応する終端行列パラメータのシャッテン 1-ノルムを最小化するのとほぼ同値であることを示す。
論文 参考訳(メタデータ) (2023-06-22T23:14:57Z) - Global Convergence of Sub-gradient Method for Robust Matrix Recovery:
Small Initialization, Noisy Measurements, and Over-parameterization [4.7464518249313805]
サブグラディエント法(Sub-gradient method, SubGM)は, 限られた測定値から低ランク行列を復元するために用いられる。
我々は、SubGMが任意の大きさの高密度ノイズ値の下でも、真の解に収束することを示す。
論文 参考訳(メタデータ) (2022-02-17T17:50:04Z) - Implicit Regularization in Matrix Sensing via Mirror Descent [29.206451882562867]
本研究では,行列検出における非正規化経験的リスクに対する離散時間ミラー降下法について検討した。
フルランク分解パラメトリゼーションによる勾配降下はミラー降下の1次近似であることを示す。
論文 参考訳(メタデータ) (2021-05-28T13:46:47Z) - Implicit Regularization in ReLU Networks with the Square Loss [56.70360094597169]
モデルパラメータの明示的な関数によって、平方損失による暗黙の正規化を特徴付けることは不可能であることを示す。
非線形予測器の暗黙的正規化を理解するためには,より一般的な枠組みが必要であることが示唆された。
論文 参考訳(メタデータ) (2020-12-09T16:48:03Z) - Low-Rank Matrix Recovery with Scaled Subgradient Methods: Fast and
Robust Convergence Without the Condition Number [34.0533596121548]
データ科学における多くの問題は、高度に不完全で、時には腐敗した観測から低いランクを推定するものとして扱われる。
1つの一般的なアプローチは行列分解に頼り、低ランク行列因子は滑らかな損失に対して一階法によって最適化される。
論文 参考訳(メタデータ) (2020-10-26T06:21:14Z) - Low-rank matrix recovery with non-quadratic loss: projected gradient
method and regularity projection oracle [23.84884127542249]
低ランク行列回復の既往の結果は2次損失に大きく影響した。
非二次的損失を伴う証明可能な低ランク回復における重要な要素が正規性予測であることを示す。
論文 参考訳(メタデータ) (2020-08-31T17:56:04Z) - A Scalable, Adaptive and Sound Nonconvex Regularizer for Low-rank Matrix
Completion [60.52730146391456]
そこで我々は,適応的かつ音質の高い"核フロベニウスノルム"と呼ばれる新しい非スケーラブルな低ランク正規化器を提案する。
特異値の計算をバイパスし、アルゴリズムによる高速な最適化を可能にする。
既存の行列学習手法では最速でありながら、最先端の回復性能が得られる。
論文 参考訳(メタデータ) (2020-08-14T18:47:58Z) - Approximation Schemes for ReLU Regression [80.33702497406632]
我々はReLU回帰の根本的な問題を考察する。
目的は、未知の分布から引き出された2乗損失に対して、最も適したReLUを出力することである。
論文 参考訳(メタデータ) (2020-05-26T16:26:17Z) - Relative Error Bound Analysis for Nuclear Norm Regularized Matrix Completion [101.83262280224729]
我々は、原子核ノルム正規化行列補完に対する相対誤差を開発する。
未知行列の最適低ランク近似を回復するための相対上界を導出する。
論文 参考訳(メタデータ) (2015-04-26T13:12:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。