AI-Powered Agile Analog Circuit Design and Optimization
- URL: http://arxiv.org/abs/2505.03750v2
- Date: Thu, 08 May 2025 06:08:59 GMT
- Title: AI-Powered Agile Analog Circuit Design and Optimization
- Authors: Jinhai Hu, Wang Ling Goh, Yuan Gao,
- Abstract summary: AI techniques are transforming analog circuit design by automating device-level tuning and enabling system-level co-optimization.<n>The combined insights highlight how AI can improve analog performance, reduce design effort, and jointly optimize analog components and application-level metrics.
- Score: 6.380907373534062
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence (AI) techniques are transforming analog circuit design by automating device-level tuning and enabling system-level co-optimization. This paper integrates two approaches: (1) AI-assisted transistor sizing using Multi-Objective Bayesian Optimization (MOBO) for direct circuit parameter optimization, demonstrated on a linearly tunable transconductor; and (2) AI-integrated circuit transfer function modeling for system-level optimization in a keyword spotting (KWS) application, demonstrated by optimizing an analog bandpass filter within a machine learning training loop. The combined insights highlight how AI can improve analog performance, reduce design iteration effort, and jointly optimize analog components and application-level metrics.
Related papers
- AnalogCoder-Pro: Unifying Analog Circuit Generation and Optimization via Multi-modal LLMs [30.598442053557896]
Large Language Models (LLMs) have brought new promise to analog design automation.<n>We propose AnalogCoder-Pro, a unified framework that integrates generative capabilities and optimization techniques.<n>We show that these approaches significantly improve the success rate of analog circuit design and enhance circuit performance.
arXiv Detail & Related papers (2025-08-04T15:25:48Z) - GENIAL: Generative Design Space Exploration via Network Inversion for Low Power Algorithmic Logic Units [1.5845117761091052]
We introduce GENIAL, a machine learning-based framework for the automatic generation and optimization of arithmetic units.<n>We show that GENIAL is consistently more sample efficient than other methods, and converges faster towards optimized designs.<n>We also demonstrate the versatility of our approach by achieving significant improvements on Finite State Machines.
arXiv Detail & Related papers (2025-07-25T06:34:59Z) - CROP: Circuit Retrieval and Optimization with Parameter Guidance using LLMs [4.481239665281804]
We present CROP, the first large language model (LLM)-powered automatic VLSI design flow tuning framework.<n>Our approach includes: (1) a scalable methodology for transforming RTL source code into dense vector representations, (2) an embedding-based retrieval system for matching designs with semantically similar circuits, and (3) a retrieval-augmented generation (RAG)-enhanced LLM-guided parameter search system.<n>Experiment results demonstrate CROP's ability to achieve superior quality-of-results (QoR) with fewer iterations than existing approaches on industrial designs, including a 9.9% reduction in power consumption.
arXiv Detail & Related papers (2025-07-02T20:25:47Z) - Optimal Transport Adapter Tuning for Bridging Modality Gaps in Few-Shot Remote Sensing Scene Classification [80.83325513157637]
Few-Shot Remote Sensing Scene Classification (FS-RSSC) presents the challenge of classifying remote sensing images with limited labeled samples.<n>We propose a novel Optimal Transport Adapter Tuning (OTAT) framework aimed at constructing an ideal Platonic representational space.
arXiv Detail & Related papers (2025-03-19T07:04:24Z) - Joint Transmit and Pinching Beamforming for Pinching Antenna Systems (PASS): Optimization-Based or Learning-Based? [89.05848771674773]
A novel antenna system ()-enabled downlink multi-user multiple-input single-output (MISO) framework is proposed.<n>It consists of multiple waveguides, which equip numerous low-cost antennas, named (PAs)<n>The positions of PAs can be reconfigured to both spanning large-scale path and space.
arXiv Detail & Related papers (2025-02-12T18:54:10Z) - Machine Learning Driven Global Optimisation Framework for Analog Circuit Design [0.0]
We propose a machine learning-driven optimisation framework for analog circuit design.
We employ machine learning models and spice simulations to direct the optimisation algorithm.
arXiv Detail & Related papers (2024-02-27T03:51:00Z) - Artificial-Intelligence-Based Design for Circuit Parameters of Power
Converters [0.0]
An artificial-intelligence-based design (AI-D) approach is proposed in this article for the parameter design of power converters.
To mitigate human-dependence for the sake of high accuracy and easy implementation, simulation tools and batch-normalization neural network (BN-NN) are adopted.
The proposed AI-D approach is validated in the circuit parameter design of the synchronous buck converter in the 48 to 12 V accessory-load power supply system in electric vehicle.
arXiv Detail & Related papers (2023-07-30T08:39:41Z) - Transformers as Statisticians: Provable In-Context Learning with
In-Context Algorithm Selection [88.23337313766353]
This work first provides a comprehensive statistical theory for transformers to perform ICL.
We show that transformers can implement a broad class of standard machine learning algorithms in context.
A emphsingle transformer can adaptively select different base ICL algorithms.
arXiv Detail & Related papers (2023-06-07T17:59:31Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Domain Knowledge-Infused Deep Learning for Automated
Analog/Radio-Frequency Circuit Parameter Optimization [6.599793419469274]
This paper presents a reinforcement learning method to automate the analog circuit parameter optimization.
It is inspired by human experts who rely on domain knowledge of analog circuit design.
Experimental results on exemplary circuits show it achieves human-level design accuracy (99%) 1.5X efficiency of existing best-performing methods.
arXiv Detail & Related papers (2022-04-27T13:58:51Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.