GENIAL: Generative Design Space Exploration via Network Inversion for Low Power Algorithmic Logic Units
- URL: http://arxiv.org/abs/2507.18989v1
- Date: Fri, 25 Jul 2025 06:34:59 GMT
- Title: GENIAL: Generative Design Space Exploration via Network Inversion for Low Power Algorithmic Logic Units
- Authors: Maxence Bouvier, Ryan Amaudruz, Felix Arnold, Renzo Andri, Lukas Cavigelli,
- Abstract summary: We introduce GENIAL, a machine learning-based framework for the automatic generation and optimization of arithmetic units.<n>We show that GENIAL is consistently more sample efficient than other methods, and converges faster towards optimized designs.<n>We also demonstrate the versatility of our approach by achieving significant improvements on Finite State Machines.
- Score: 1.5845117761091052
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As AI workloads proliferate, optimizing arithmetic units is becoming increasingly important to reduce the footprint of digital systems. Conventional design flows, which often rely on manual or heuristics-based optimization, are limited in their ability to thoroughly explore the vast design space. In this paper, we introduce GENIAL, a machine learning-based framework for the automatic generation and optimization of arithmetic units, more specifically multipliers. At the core of GENIAL is a Transformer-based surrogate model trained in two stages, involving self-supervised pretraining followed by supervised finetuning, to robustly forecast key hardware metrics such as power and area from abstracted design representations. By inverting the surrogate model, GENIAL efficiently searches for new operand encodings that directly minimize power consumption in arithmetic units for specific input data distributions. Extensive experiments on large datasets demonstrate that GENIAL is consistently more sample efficient than other methods, and converges faster towards optimized designs. This enables to deploy a high-effort logic synthesis optimization flow in the loop, improving the accuracy of the surrogate model. Notably, GENIAL automatically discovers encodings that achieve up to 18% switching activity savings within multipliers on representative AI workloads compared with the conventional two's complement. We also demonstrate the versatility of our approach by achieving significant improvements on Finite State Machines, highlighting GENIAL's applicability for a wide spectrum of logic functions. Together, these advances mark a significant step toward automated Quality-of-Results-optimized combinational circuit generation for digital systems.
Related papers
- AnalogCoder-Pro: Unifying Analog Circuit Generation and Optimization via Multi-modal LLMs [30.598442053557896]
Large Language Models (LLMs) have brought new promise to analog design automation.<n>We propose AnalogCoder-Pro, a unified framework that integrates generative capabilities and optimization techniques.<n>We show that these approaches significantly improve the success rate of analog circuit design and enhance circuit performance.
arXiv Detail & Related papers (2025-08-04T15:25:48Z) - CROP: Circuit Retrieval and Optimization with Parameter Guidance using LLMs [4.481239665281804]
We present CROP, the first large language model (LLM)-powered automatic VLSI design flow tuning framework.<n>Our approach includes: (1) a scalable methodology for transforming RTL source code into dense vector representations, (2) an embedding-based retrieval system for matching designs with semantically similar circuits, and (3) a retrieval-augmented generation (RAG)-enhanced LLM-guided parameter search system.<n>Experiment results demonstrate CROP's ability to achieve superior quality-of-results (QoR) with fewer iterations than existing approaches on industrial designs, including a 9.9% reduction in power consumption.
arXiv Detail & Related papers (2025-07-02T20:25:47Z) - Synergistic Development of Perovskite Memristors and Algorithms for Robust Analog Computing [53.77822620185878]
We propose a synergistic methodology to concurrently optimize perovskite memristor fabrication and develop robust analog DNNs.<n>We develop "BayesMulti", a training strategy utilizing BO-guided noise injection to improve the resistance of analog DNNs to memristor imperfections.<n>Our integrated approach enables use of analog computing in much deeper and wider networks, achieving up to 100-fold improvements.
arXiv Detail & Related papers (2024-12-03T19:20:08Z) - Logic Synthesis Optimization with Predictive Self-Supervision via Causal Transformers [19.13500546022262]
We introduce LSOformer, a novel approach harnessing Autoregressive transformer models and predictive SSL to predict the trajectory of Quality of Results (QoR)<n>LSOformer integrates cross-attention modules to merge insights from circuit graphs and optimization sequences, thereby enhancing prediction accuracy for QoR metrics.
arXiv Detail & Related papers (2024-09-16T18:45:07Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - INVICTUS: Optimizing Boolean Logic Circuit Synthesis via Synergistic
Learning and Search [18.558280701880136]
State-of-the-art logic synthesis algorithms have a large number of logic minimizations.
INVICTUS generates a sequence of logic minimizations based on a training dataset of previously seen designs.
arXiv Detail & Related papers (2023-05-22T15:50:42Z) - Performance Embeddings: A Similarity-based Approach to Automatic
Performance Optimization [71.69092462147292]
Performance embeddings enable knowledge transfer of performance tuning between applications.
We demonstrate this transfer tuning approach on case studies in deep neural networks, dense and sparse linear algebra compositions, and numerical weather prediction stencils.
arXiv Detail & Related papers (2023-03-14T15:51:35Z) - Machine Learning Framework for Quantum Sampling of Highly-Constrained,
Continuous Optimization Problems [101.18253437732933]
We develop a generic, machine learning-based framework for mapping continuous-space inverse design problems into surrogate unconstrained binary optimization problems.
We showcase the framework's performance on two inverse design problems by optimizing thermal emitter topologies for thermophotovoltaic applications and (ii) diffractive meta-gratings for highly efficient beam steering.
arXiv Detail & Related papers (2021-05-06T02:22:23Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.