AnalogCoder-Pro: Unifying Analog Circuit Generation and Optimization via Multi-modal LLMs
- URL: http://arxiv.org/abs/2508.02518v1
- Date: Mon, 04 Aug 2025 15:25:48 GMT
- Title: AnalogCoder-Pro: Unifying Analog Circuit Generation and Optimization via Multi-modal LLMs
- Authors: Yao Lai, Souradip Poddar, Sungyoung Lee, Guojin Chen, Mengkang Hu, Bei Yu, Ping Luo, David Z. Pan,
- Abstract summary: Large Language Models (LLMs) have brought new promise to analog design automation.<n>We propose AnalogCoder-Pro, a unified framework that integrates generative capabilities and optimization techniques.<n>We show that these approaches significantly improve the success rate of analog circuit design and enhance circuit performance.
- Score: 30.598442053557896
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Despite advances in analog design automation, analog front-end design still heavily depends on expert intuition and iterative simulations, underscoring critical gaps in fully automated optimization for performance-critical applications. Recently, the rapid development of Large Language Models (LLMs) has brought new promise to analog design automation. However, existing work remains in its early stages, and holistic joint optimization for practical end-to-end solutions remains largely unexplored. We propose AnalogCoder-Pro, a unified multimodal LLM-based framework that integrates generative capabilities and optimization techniques to jointly explore circuit topologies and optimize device sizing, automatically generating performance-specific, fully sized schematic netlists. AnalogCoder-Pro employs rejection sampling for fine-tuning LLMs on high-quality synthesized circuit data and introduces a multimodal diagnosis and repair workflow based on functional specifications and waveform images. By leveraging LLMs to interpret generated circuit netlists, AnalogCoder-Pro automates the extraction of critical design parameters and the formulation of parameter spaces, establishing an end-to-end workflow for simultaneous topology generation and device sizing optimization. Extensive experiments demonstrate that these orthogonal approaches significantly improve the success rate of analog circuit design and enhance circuit performance.
Related papers
- GENIAL: Generative Design Space Exploration via Network Inversion for Low Power Algorithmic Logic Units [1.5845117761091052]
We introduce GENIAL, a machine learning-based framework for the automatic generation and optimization of arithmetic units.<n>We show that GENIAL is consistently more sample efficient than other methods, and converges faster towards optimized designs.<n>We also demonstrate the versatility of our approach by achieving significant improvements on Finite State Machines.
arXiv Detail & Related papers (2025-07-25T06:34:59Z) - CROP: Circuit Retrieval and Optimization with Parameter Guidance using LLMs [4.481239665281804]
We present CROP, the first large language model (LLM)-powered automatic VLSI design flow tuning framework.<n>Our approach includes: (1) a scalable methodology for transforming RTL source code into dense vector representations, (2) an embedding-based retrieval system for matching designs with semantically similar circuits, and (3) a retrieval-augmented generation (RAG)-enhanced LLM-guided parameter search system.<n>Experiment results demonstrate CROP's ability to achieve superior quality-of-results (QoR) with fewer iterations than existing approaches on industrial designs, including a 9.9% reduction in power consumption.
arXiv Detail & Related papers (2025-07-02T20:25:47Z) - Leveraging Importance Sampling to Detach Alignment Modules from Large Language Models [50.19188692497892]
Traditional alignment methods often require retraining large pretrained models.<n>We propose a novel textitResidual Alignment Model (textitRAM) that formalizes the alignment process as a type of importance sampling.<n>We develop a resampling algorithm with iterative token-level decoding to address the common first-token latency issue in comparable methods.
arXiv Detail & Related papers (2025-05-26T08:53:02Z) - AI-Powered Agile Analog Circuit Design and Optimization [6.380907373534062]
AI techniques are transforming analog circuit design by automating device-level tuning and enabling system-level co-optimization.<n>The combined insights highlight how AI can improve analog performance, reduce design effort, and jointly optimize analog components and application-level metrics.
arXiv Detail & Related papers (2025-04-17T05:56:14Z) - Synergistic Development of Perovskite Memristors and Algorithms for Robust Analog Computing [53.77822620185878]
We propose a synergistic methodology to concurrently optimize perovskite memristor fabrication and develop robust analog DNNs.<n>We develop "BayesMulti", a training strategy utilizing BO-guided noise injection to improve the resistance of analog DNNs to memristor imperfections.<n>Our integrated approach enables use of analog computing in much deeper and wider networks, achieving up to 100-fold improvements.
arXiv Detail & Related papers (2024-12-03T19:20:08Z) - Logic Synthesis Optimization with Predictive Self-Supervision via Causal Transformers [19.13500546022262]
We introduce LSOformer, a novel approach harnessing Autoregressive transformer models and predictive SSL to predict the trajectory of Quality of Results (QoR)<n>LSOformer integrates cross-attention modules to merge insights from circuit graphs and optimization sequences, thereby enhancing prediction accuracy for QoR metrics.
arXiv Detail & Related papers (2024-09-16T18:45:07Z) - INSIGHT: Universal Neural Simulator for Analog Circuits Harnessing Autoregressive Transformers [13.94505840368669]
INSIGHT is an effective universal neural simulator in the analog front-end design automation loop.
It accurately predicts the performance metrics of analog circuits with just a few microseconds of inference time.
arXiv Detail & Related papers (2024-07-10T03:52:53Z) - Automated Design and Optimization of Distributed Filtering Circuits via Reinforcement Learning [20.500468654567033]
This study proposes a novel end-to-end automated method for DFC design.
The proposed method harnesses reinforcement learning (RL) algorithms, eliminating the dependence on the design experience of engineers.
Our method achieves superior performance when designing complex or rapidly evolving DFCs.
arXiv Detail & Related papers (2024-02-22T02:36:14Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Proximal Policy Optimization-based Transmit Beamforming and Phase-shift
Design in an IRS-aided ISAC System for the THz Band [90.45915557253385]
IRS-aided integrated sensing and communications (ISAC) system operating in the terahertz (THz) band is proposed to maximize the system capacity.
Transmit beamforming and phase-shift design are transformed into a universal optimization problem with ergodic constraints.
arXiv Detail & Related papers (2022-03-21T09:15:18Z) - Machine Learning Framework for Quantum Sampling of Highly-Constrained,
Continuous Optimization Problems [101.18253437732933]
We develop a generic, machine learning-based framework for mapping continuous-space inverse design problems into surrogate unconstrained binary optimization problems.
We showcase the framework's performance on two inverse design problems by optimizing thermal emitter topologies for thermophotovoltaic applications and (ii) diffractive meta-gratings for highly efficient beam steering.
arXiv Detail & Related papers (2021-05-06T02:22:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.