論文の概要: Scalability Matters: Overcoming Challenges in InstructGLM with Similarity-Degree-Based Sampling
- arxiv url: http://arxiv.org/abs/2505.03799v1
- Date: Fri, 02 May 2025 06:08:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-08 19:07:35.819991
- Title: Scalability Matters: Overcoming Challenges in InstructGLM with Similarity-Degree-Based Sampling
- Title(参考訳): スケーラビリティの問題: 類似度に基づくサンプリングによるInstructGLMの課題克服
- Authors: Hyun Lee, Chris Yi, Maminur Islam, B. D. S. Aritra,
- Abstract要約: 提案するSDM-InstructGLMは,GNNに依存することなく,拡張性と効率を向上する命令調整グラフ言語モデル(InstructGLM)フレームワークである。
本手法では,ノード間類似度と次数集中度に基づいてグラフ情報を選択的にサンプリングし,符号化する,類似度に基づくバイアス付きランダムウォーク機構を提案する。
本結果は,LLMのみのグラフ処理の実現可能性を示し,命令ベースの微調整によって最適化されたスケーラブルかつ解釈可能なグラフ言語モデル(GLM)を実現する。
- 参考スコア(独自算出の注目度): 1.2805157669888096
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated strong capabilities in various natural language processing tasks; however, their application to graph-related problems remains limited, primarily due to scalability constraints and the absence of dedicated mechanisms for processing graph structures. Existing approaches predominantly integrate LLMs with Graph Neural Networks (GNNs), using GNNs as feature encoders or auxiliary components. However, directly encoding graph structures within LLMs has been underexplored, particularly in the context of large-scale graphs where token limitations hinder effective representation. To address these challenges, we propose SDM-InstructGLM, a novel instruction-tuned Graph Language Model (InstructGLM) framework that enhances scalability and efficiency without relying on GNNs. Our method introduces a similarity-degree-based biased random walk mechanism, which selectively samples and encodes graph information based on node-feature similarity and degree centrality, ensuring an adaptive and structured representation within the LLM. This approach significantly improves token efficiency, mitigates information loss due to random sampling, and enhances performance on graph-based tasks such as node classification and link prediction. Furthermore, our results demonstrate the feasibility of LLM-only graph processing, enabling scalable and interpretable Graph Language Models (GLMs) optimized through instruction-based fine-tuning. This work paves the way for GNN-free approaches to graph learning, leveraging LLMs as standalone graph reasoning models. Our source code is available on GitHub.
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて強力な機能を示してきたが、グラフ関連の問題へのそれらの適用は、主にスケーラビリティの制約とグラフ構造を処理するための専用のメカニズムが欠如していることから、制限されている。
既存のアプローチでは、主にLLMとグラフニューラルネットワーク(GNN)を統合し、機能エンコーダや補助コンポーネントとしてGNNを使用している。
しかし、LSMの内部で直接的にグラフ構造を符号化することは、特にトークン制限が効果的な表現を妨げるような大規模グラフの文脈では、探索が過小評価されている。
これらの課題に対処するために、GNNに頼ることなくスケーラビリティと効率を向上させる新しい命令調整グラフ言語モデル(InstructGLM)フレームワークであるSDM-InstructGLMを提案する。
本手法では,ノード間類似度と次数集中度に基づいてグラフ情報を選択的にサンプリングし,符号化し,LLM内の適応的かつ構造化された表現を保証する,類似度に基づくバイアス付きランダムウォーク機構を提案する。
このアプローチはトークン効率を大幅に改善し、ランダムサンプリングによる情報損失を軽減し、ノード分類やリンク予測といったグラフベースのタスクの性能を向上させる。
さらに,LLMのみのグラフ処理の実現可能性を示し,命令ベースの微調整によって最適化されたスケーラブルかつ解釈可能なグラフ言語モデル(GLM)を実現する。
この研究は、グラフ学習へのGNNフリーアプローチの道を開いたもので、LCMをスタンドアロングラフ推論モデルとして活用している。
ソースコードはGitHubで入手可能です。
関連論文リスト
- Refining Interactions: Enhancing Anisotropy in Graph Neural Networks with Language Semantics [6.273224130511677]
異方性GNNの概念を自然言語レベルまで拡張するフレームワークであるLanSAGNN(Language Semantic Anisotropic Graph Neural Network)を紹介する。
本稿では,LLMの出力とグラフタスクとの整合性を改善するために,効率的な2層LLMの微調整アーキテクチャを提案する。
論文 参考訳(メタデータ) (2025-04-02T07:32:45Z) - GL-Fusion: Rethinking the Combination of Graph Neural Network and Large Language model [63.774726052837266]
グラフニューラルネットワーク(GNN)とLarge Language Models(LLM)を深く統合した新しいアーキテクチャを導入する。
本稿では,(1)GNNのメッセージパッシング機能を直接LLMのトランスフォーマー層に組み込む構造対応トランスフォーマー,(2)グラフノードとエッジから圧縮されていない全テキストを処理するグラフテキストクロスアテンション,(3)GNN-LLMツインプレクタ,(3)GNN-LLMツインプレクタ,3)GNNのスケーラブルなワンパス予測とともに,LLMの柔軟な自己回帰生成を実現する。
論文 参考訳(メタデータ) (2024-12-08T05:49:58Z) - NT-LLM: A Novel Node Tokenizer for Integrating Graph Structure into Large Language Models [26.739650151993928]
グラフは、現実世界のシナリオにおける関係を表現するための基本的なデータ構造である。
グラフ関連のタスクにLLM(Large Language Models)を適用することは、大きな課題となる。
我々は,グラフ構造を効率的にエンコードする新しいフレームワークNT-LLM(Node Tokenizer for Large Language Models)を紹介する。
論文 参考訳(メタデータ) (2024-10-14T17:21:57Z) - Let's Ask GNN: Empowering Large Language Model for Graph In-Context Learning [28.660326096652437]
本稿では,逐次テキスト処理とグラフ構造化データのギャップを埋める新しいアプローチであるAskGNNを紹介する。
AskGNNはグラフニューラルネットワーク(GNN)を利用した構造強化レトリバーを使用して、グラフをまたいだラベル付きノードを選択する。
3つのタスクと7つのLLMにわたる実験は、グラフタスクのパフォーマンスにおいてAskGNNが優れていることを示す。
論文 参考訳(メタデータ) (2024-10-09T17:19:12Z) - How to Make LLMs Strong Node Classifiers? [70.14063765424012]
言語モデル(LM)は、グラフニューラルネットワーク(GNN)やグラフトランスフォーマー(GT)など、ドメイン固有のモデルの優位性に挑戦している。
本稿では,ノード分類タスクにおける最先端(SOTA)GNNに匹敵する性能を実現するために,既製のLMを有効活用する手法を提案する。
論文 参考訳(メタデータ) (2024-10-03T08:27:54Z) - All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
事前訓練された知識と強力なセマンティック理解能力を持つ大規模言語モデル(LLM)は、最近、視覚とテキストデータを使用してアプリケーションに恩恵をもたらす顕著な能力を示している。
E-LLaGNNは、グラフから限られたノード数を増やして、グラフ学習のメッセージパッシング手順を強化するオンデマンドLLMサービスを備えたフレームワークである。
論文 参考訳(メタデータ) (2024-07-20T22:09:42Z) - Multi-View Empowered Structural Graph Wordification for Language Models [12.22063024099311]
本稿では,LLM-graphアライメントのためのエンドツーエンドのモダリティアライメントフレームワークについて紹介する。
提案手法は LLM とのトークンレベルアライメントを容易にするために設計されており,グラフの内在的' を理解可能な自然言語に効果的に翻訳することができる。
我々のフレームワークは、LLMとGNN間のトークンレベルのアライメントを実現するための、有望な試みである、ある視覚的解釈可能性、効率、堅牢性を保証する。
論文 参考訳(メタデータ) (2024-06-19T16:43:56Z) - Can Graph Learning Improve Planning in LLM-based Agents? [61.47027387839096]
言語エージェントにおけるタスクプランニングは、大規模言語モデル(LLM)の開発とともに重要な研究トピックとして浮上している。
本稿では,課題計画のためのグラフ学習に基づく手法について検討する。
我々のグラフ学習への関心は、注意のバイアスと自己回帰的損失が、グラフ上の意思決定を効果的にナビゲートするLLMの能力を妨げているという理論的な発見に起因している。
論文 参考訳(メタデータ) (2024-05-29T14:26:24Z) - Parameter-Efficient Tuning Large Language Models for Graph Representation Learning [62.26278815157628]
Graph-awareを導入します。
GPEFT - グラフ表現学習のための新しい手法。
グラフニューラルネットワーク(GNN)を用いて、隣接するノードからグラフプロンプトに構造情報をエンコードする。
我々は8つの異なるテキストリッチグラフで実施した総合的な実験を通じて,リンク予測評価において hit@1 と Mean Reciprocal Rank (MRR) の平均 2% の改善を観察し,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2024-04-28T18:36:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。