論文の概要: AI-driven multi-source data fusion for algal bloom severity classification in small inland water bodies: Leveraging Sentinel-2, DEM, and NOAA climate data
- arxiv url: http://arxiv.org/abs/2505.03808v1
- Date: Fri, 02 May 2025 09:47:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-08 19:07:35.830462
- Title: AI-driven multi-source data fusion for algal bloom severity classification in small inland water bodies: Leveraging Sentinel-2, DEM, and NOAA climate data
- Title(参考訳): 小型内陸水域における藻類開花重度分類のためのAI駆動多ソースデータ融合:Sentinel-2, DEM, NOAA気候データを活用する
- Authors: Ioannis Nasios,
- Abstract要約: 有害な藻類は、世界中の内陸の水質と公衆衛生にとって脅威となっている。
本研究では,複数のオープンソースのリモートセンシングデータを高度な人工知能モデルと統合する高性能手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Harmful algal blooms are a growing threat to inland water quality and public health worldwide, creating an urgent need for efficient, accurate, and cost-effective detection methods. This research introduces a high-performing methodology that integrates multiple open-source remote sensing data with advanced artificial intelligence models. Key data sources include Copernicus Sentinel-2 optical imagery, the Copernicus Digital Elevation Model (DEM), and NOAA's High-Resolution Rapid Refresh (HRRR) climate data, all efficiently retrieved using platforms like Google Earth Engine (GEE) and Microsoft Planetary Computer (MPC). The NIR and two SWIR bands from Sentinel-2, the altitude from the elevation model, the temperature and wind from NOAA as well as the longitude and latitude were the most important features. The approach combines two types of machine learning models, tree-based models and a neural network, into an ensemble for classifying algal bloom severity. While the tree models performed strongly on their own, incorporating a neural network added robustness and demonstrated how deep learning models can effectively use diverse remote sensing inputs. The method leverages high-resolution satellite imagery and AI-driven analysis to monitor algal blooms dynamically, and although initially developed for a NASA competition in the U.S., it shows potential for global application. The complete code is available for further adaptation and practical implementation, illustrating the convergence of remote sensing data and AI to address critical environmental challenges (https://github.com/IoannisNasios/HarmfulAlgalBloomDetection).
- Abstract(参考訳): 有害な藻類は、世界中の内陸の水質と公衆衛生にとって脅威となり、効率的で正確で費用対効果の高い検出方法が緊急に必要となる。
本研究では,複数のオープンソースのリモートセンシングデータを高度な人工知能モデルと統合する高性能手法を提案する。
主要なデータソースには、Copernicus Sentinel-2光画像、Copernicus Digital Elevation Model(DEM)、NOAAのHigh-Resolution Rapid Refresh(HRRR)気候データがある。
センチネル-2からのNIRと2つのSWIR帯、標高モデルからの高度、NOAAからの温度と風、経度と緯度が最も重要な特徴であった。
このアプローチは、木ベースのモデルとニューラルネットワークという2つのタイプの機械学習モデルを、藻の開花度を分類するためのアンサンブルに組み合わせる。
ツリーモデルは自分自身で強く機能する一方で、ニューラルネットワークを組み込むことで堅牢性を高め、ディープラーニングモデルが多様なリモートセンシングインプットを効果的に活用できることを実証した。
この方法は高解像度の衛星画像とAIによる分析を利用して藻類の開花を動的にモニタリングする。
完全なコードは、リモートセンシングデータとAIの収束によって、重要な環境問題に対処する(https://github.com/IoannisNasios/HarmfulAlgalBloomDetection)。
関連論文リスト
- Aerial Secure Collaborative Communications under Eavesdropper Collusion in Low-altitude Economy: A Generative Swarm Intelligent Approach [84.20358039333756]
本研究では,AAV群に分散コラボレーティブビームフォーミング(DCB)を導入し,対応する信号分布を制御して盗聴者の共謀を処理した。
両方向の秘密保持能力と最大サイドローブレベルを最小化して、未知の盗聴者からの情報漏洩を回避する。
本稿では,より少ないオーバーヘッドで問題を解決するために,新しいジェネレーティブ・スウォーム・インテリジェンス(GenSI)フレームワークを提案する。
論文 参考訳(メタデータ) (2025-03-02T04:02:58Z) - AeroGen: Enhancing Remote Sensing Object Detection with Diffusion-Driven Data Generation [43.583735469794675]
リモートセンシング画像オブジェクト検出(RSIOD)は、衛星や空中画像内の特定の物体を特定し、特定することを目的としている。
現在のRSIODデータセットにはラベル付きデータが不足しており、現在の検出アルゴリズムのパフォーマンスを著しく制限している。
本稿では,RSIODに適したレイアウト制御可能な拡散生成モデル(AeroGen)を提案する。
論文 参考訳(メタデータ) (2024-11-23T09:04:33Z) - Intelligent Green Efficiency for Intrusion Detection [0.0]
本稿では,AIの性能向上のための異なるプログラミング言語と特徴選択(FS)手法の評価を行う。
実験はRandom Forest、XGBoost、LightGBM、Multi-Layer Perceptron、Long Short-Term Memoryの5つのMLモデルを用いて行われた。
その結果、FSは検出精度を損なうことなくAIモデルの計算効率を向上させる重要な役割を担っていることが示された。
論文 参考訳(メタデータ) (2024-11-11T15:01:55Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
単一フレーム赤外線小ターゲット検出(SIRST)は、乱雑な背景から小さなターゲットを認識することを目的としている。
Transformerの開発に伴い、SIRSTモデルのスケールは常に増大している。
赤外線小ターゲットデータの多彩な多様性により,本アルゴリズムはモデル性能と収束速度を大幅に改善する。
論文 参考訳(メタデータ) (2024-03-08T16:14:54Z) - Deep Learning for Real Time Satellite Pose Estimation on Low Power Edge
TPU [58.720142291102135]
本稿では,ニューラルネットワークアーキテクチャを利用したポーズ推定ソフトウェアを提案する。
我々は、低消費電力の機械学習アクセラレーターが宇宙での人工知能の活用を可能にしていることを示す。
論文 参考訳(メタデータ) (2022-04-07T08:53:18Z) - Neurosymbolic hybrid approach to driver collision warning [64.02492460600905]
自律運転システムには2つの主要なアルゴリズムアプローチがある。
ディープラーニングだけでは、多くの分野で最先端の結果が得られています。
しかし、ディープラーニングモデルが機能しない場合、デバッグが非常に難しい場合もあります。
論文 参考訳(メタデータ) (2022-03-28T20:29:50Z) - AirDet: Few-Shot Detection without Fine-tuning for Autonomous
Exploration [16.032316550612336]
本稿では,支援画像とのクラス関係の学習による微調整が不要なAirDetを提案する。
AirDetは、徹底的に微調整された方法と同等またはそれ以上の結果を達成し、ベースラインで最大40~60%の改善を実現している。
DARPA潜水試験における実地探査実験の評価結果について述べる。
論文 参考訳(メタデータ) (2021-12-03T06:41:07Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
空気質は人間の健康に大きく影響し、空気質指数(AQI)の正確かつタイムリーな予測がますます重要になっている。
本稿では, 精密な3次元空気質モニタリングと予測を行うための, 新たなフェデレーション学習型地上空気質検知フレームワークを提案する。
地中センシングシステムでは, グラフ畳み込みニューラルネットワークを用いたLong Short-Term Memory (GC-LSTM) モデルを提案し, 高精度, リアルタイム, 将来的なAQI推論を実現する。
論文 参考訳(メタデータ) (2020-07-23T13:32:47Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。