論文の概要: Modeling Behavioral Preferences of Cyber Adversaries Using Inverse Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2505.03817v1
- Date: Fri, 02 May 2025 18:20:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-08 19:07:35.839244
- Title: Modeling Behavioral Preferences of Cyber Adversaries Using Inverse Reinforcement Learning
- Title(参考訳): 逆強化学習を用いたサイバーアドバイザの行動選好のモデル化
- Authors: Aditya Shinde, Prashant Doshi,
- Abstract要約: 本稿では,逆強化学習(IRL)を用いたシステムレベルの監査ログから攻撃者の嗜好をモデル化するための包括的アプローチを提案する。
我々は、彼らのツールや技術に関する法医学データから、サイバー敵の行動選好を学習する。
その結果,低レベルの鑑識データが,相手の主観的嗜好を自動的に明らかにできることがわかった。
- 参考スコア(独自算出の注目度): 4.5456862813416565
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a holistic approach to attacker preference modeling from system-level audit logs using inverse reinforcement learning (IRL). Adversary modeling is an important capability in cybersecurity that lets defenders characterize behaviors of potential attackers, which enables attribution to known cyber adversary groups. Existing approaches rely on documenting an ever-evolving set of attacker tools and techniques to track known threat actors. Although attacks evolve constantly, attacker behavioral preferences are intrinsic and less volatile. Our approach learns the behavioral preferences of cyber adversaries from forensics data on their tools and techniques. We model the attacker as an expert decision-making agent with unknown behavioral preferences situated in a computer host. We leverage attack provenance graphs of audit logs to derive a state-action trajectory of the attack. We test our approach on open datasets of audit logs containing real attack data. Our results demonstrate for the first time that low-level forensics data can automatically reveal an adversary's subjective preferences, which serves as an additional dimension to modeling and documenting cyber adversaries. Attackers' preferences tend to be invariant despite their different tools and indicate predispositions that are inherent to the attacker. As such, these inferred preferences can potentially serve as unique behavioral signatures of attackers and improve threat attribution.
- Abstract(参考訳): 本稿では,逆強化学習(IRL)を用いたシステムレベルの監査ログから攻撃者の嗜好をモデル化するための総合的なアプローチを提案する。
敵モデリング(Adversary Modeling)は、サイバーセキュリティにおいて重要な機能であり、防御者が潜在的な攻撃者の振る舞いを特徴づけ、既知のサイバー敵グループへの帰属を可能にする。
既存のアプローチは、既知の脅威アクターを追跡するために、絶え間なく進化する攻撃ツールとテクニックの文書化に依存している。
攻撃は常に進化するが、攻撃者の行動選好は本質的で不安定ではない。
提案手法は,ツールや技術に関する法医学的データから,サイバー敵の行動選好を学習する。
我々は攻撃者をコンピュータのホストにある未知の行動嗜好を持つ専門家の意思決定エージェントとしてモデル化する。
我々は、監査ログの攻撃前駆グラフを活用して、攻撃の状態-作用軌跡を導出する。
実際の攻撃データを含む監査ログのオープンデータセットに対して,我々のアプローチをテストする。
この結果から,低レベルの鑑識データが自動的に敵の主観的嗜好を明らかにすることは,サイバー敵のモデリングと文書化の新たな次元として有効であることが示された。
攻撃者の好みは、異なるツールにもかかわらず不変であり、攻撃者固有の前置詞を示す傾向がある。
このような推論された嗜好は、攻撃者のユニークな行動シグネチャとして機能し、脅威帰属を改善する可能性がある。
関連論文リスト
- Improving behavior based authentication against adversarial attack using XAI [3.340314613771868]
本稿では,eXplainable AI(XAI)をベースとした,このようなシナリオにおける敵攻撃に対する防御戦略を提案する。
本手法で訓練した特徴セレクタは,元の認証器の前のフィルタとして使用することができる。
我々は,XAIをベースとした防衛戦略が敵の攻撃に対して有効であり,他の防衛戦略よりも優れていることを実証する。
論文 参考訳(メタデータ) (2024-02-26T09:29:05Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
フェデレーション学習は、プライバシを損なうことなく、分散化されたデータソースからの学習を可能にする。
悪意のあるクライアントがトレーニングプロセスに干渉する、毒殺攻撃のモデル化には脆弱である。
我々はFedDefenderと呼ばれるクライアントサイドに焦点を当てた新しい防御機構を提案し、クライアントの堅牢なローカルモデルのトレーニングを支援する。
論文 参考訳(メタデータ) (2023-07-18T08:00:41Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
我々は,タスク特性に基づいて,無目標で毒のみのバックドア攻撃を設計する。
攻撃によって、バックドアがターゲットモデルに埋め込まれると、トリガーパターンでスタンプされたオブジェクトの検出を失う可能性があることを示す。
論文 参考訳(メタデータ) (2022-11-02T17:05:45Z) - I Know What You Trained Last Summer: A Survey on Stealing Machine
Learning Models and Defences [0.1031296820074812]
本研究では,モデル盗難攻撃について検討し,その性能を評価し,異なる環境で対応する防御技術を探究する。
攻撃・防衛アプローチのための分類法を提案し,目標と利用可能な資源に基づいて適切な攻撃・防衛を選択する方法に関するガイドラインを提供する。
論文 参考訳(メタデータ) (2022-06-16T21:16:41Z) - On the Effectiveness of Adversarial Training against Backdoor Attacks [111.8963365326168]
バックドアモデルは、事前に定義されたトリガーパターンが存在する場合、常にターゲットクラスを予測する。
一般的には、敵の訓練はバックドア攻撃に対する防御であると信じられている。
本稿では,様々なバックドア攻撃に対して良好な堅牢性を提供するハイブリッド戦略を提案する。
論文 参考訳(メタデータ) (2022-02-22T02:24:46Z) - Zero-shot learning approach to adaptive Cybersecurity using Explainable
AI [0.5076419064097734]
本稿では,セキュリティ情報やイベント管理 (SIEM) や侵入検知 (IDS) といったサイバーセキュリティシステムで直面するアラーム浸水問題に対処する新しいアプローチを提案する。
我々は機械学習(ML)にゼロショット学習法を適用し、MLモデルによって生成された異常の予測に説明を活用する。
このアプローチでは、攻撃に関する事前の知識がなければ、それを識別し、分類に寄与する特徴を解読し、特定のカテゴリで攻撃をバケット化しようとする。
論文 参考訳(メタデータ) (2021-06-21T06:29:13Z) - Adversarial Attack and Defense in Deep Ranking [100.17641539999055]
本稿では,敵対的摂動によって選抜された候補者のランクを引き上げたり下げたりできる,ディープランキングシステムに対する2つの攻撃を提案する。
逆に、全ての攻撃に対するランキングモデルロバスト性を改善するために、反崩壊三重項防御法が提案されている。
MNIST, Fashion-MNIST, CUB200-2011, CARS196およびStanford Online Productsデータセットを用いて, 敵のランク付け攻撃と防御を評価した。
論文 参考訳(メタデータ) (2021-06-07T13:41:45Z) - Sampling Attacks: Amplification of Membership Inference Attacks by
Repeated Queries [74.59376038272661]
本手法は,他の標準メンバーシップ相手と異なり,被害者モデルのスコアにアクセスできないような厳格な制限の下で動作可能な,新しいメンバーシップ推論手法であるサンプリングアタックを導入する。
ラベルのみを公開している被害者モデルでは,攻撃のサンプリングが引き続き可能であり,攻撃者はその性能の最大100%を回復できることを示す。
防衛においては,被害者モデルのトレーニング中の勾配摂動と予測時の出力摂動の形式で差分プライバシーを選択する。
論文 参考訳(メタデータ) (2020-09-01T12:54:54Z) - Revisiting Adversarially Learned Injection Attacks Against Recommender
Systems [6.920518936054493]
本稿では,逆学習型インジェクションアタック問題を再考する。
我々は、最適化問題として偽ユーザーを生成するための正確な解決策が、はるかに大きな影響をもたらすことを示している。
論文 参考訳(メタデータ) (2020-08-11T17:30:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。