A Comprehensive Analysis of Adversarial Attacks against Spam Filters
- URL: http://arxiv.org/abs/2505.03831v1
- Date: Sun, 04 May 2025 11:38:13 GMT
- Title: A Comprehensive Analysis of Adversarial Attacks against Spam Filters
- Authors: Esra Hotoğlu, Sevil Sen, Burcu Can,
- Abstract summary: This study investigates the impact of adversarial attacks on deep learning-based spam detection systems using real-world datasets.<n>Novel scoring functions, including spam weights and attention weights, are introduced to improve attack effectiveness.
- Score: 3.5307531256684848
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has revolutionized email filtering, which is critical to protect users from cyber threats such as spam, malware, and phishing. However, the increasing sophistication of adversarial attacks poses a significant challenge to the effectiveness of these filters. This study investigates the impact of adversarial attacks on deep learning-based spam detection systems using real-world datasets. Six prominent deep learning models are evaluated on these datasets, analyzing attacks at the word, character sentence, and AI-generated paragraph-levels. Novel scoring functions, including spam weights and attention weights, are introduced to improve attack effectiveness. This comprehensive analysis sheds light on the vulnerabilities of spam filters and contributes to efforts to improve their security against evolving adversarial threats.
Related papers
- MultiPhishGuard: An LLM-based Multi-Agent System for Phishing Email Detection [3.187381965457262]
MultiPhishGuard is a dynamic multi-agent detection system that synergizes specialized expertise with adversarial-aware reinforcement learning.<n>Our framework employs five cooperative agents with automatically adjusted decision weights powered by a Proximal Policy Optimization reinforcement learning algorithm.<n>Experiments demonstrate that MultiPhishGuard achieves high accuracy (97.89%) with low false positive (2.73%) and false negative rates (0.20%)
arXiv Detail & Related papers (2025-05-26T23:27:15Z) - Next-Generation Phishing: How LLM Agents Empower Cyber Attackers [10.067883724547182]
The escalating threat of phishing emails has become increasingly sophisticated with the rise of Large Language Models (LLMs)
As attackers exploit LLMs to craft more convincing and evasive phishing emails, it is crucial to assess the resilience of current phishing defenses.
We conduct a comprehensive evaluation of traditional phishing detectors, such as Gmail Spam Filter, Apache SpamAssassin, and Proofpoint, as well as machine learning models like SVM, Logistic Regression, and Naive Bayes.
Our results reveal notable declines in detection accuracy for rephrased emails across all detectors, highlighting critical weaknesses in current phishing defenses.
arXiv Detail & Related papers (2024-11-21T06:20:29Z) - ASETF: A Novel Method for Jailbreak Attack on LLMs through Translate Suffix Embeddings [58.82536530615557]
We propose an Adversarial Suffix Embedding Translation Framework (ASETF) to transform continuous adversarial suffix embeddings into coherent and understandable text.
Our method significantly reduces the computation time of adversarial suffixes and achieves a much better attack success rate to existing techniques.
arXiv Detail & Related papers (2024-02-25T06:46:27Z) - A Malware Classification Survey on Adversarial Attacks and Defences [0.0]
Deep learning models are effective at detecting malware, but are vulnerable to adversarial attacks.
Attacks like this can create malicious files that are resistant to detection, creating a significant cybersecurity risk.
Recent research has seen the development of several adversarial attack and response approaches.
arXiv Detail & Related papers (2023-12-15T09:25:48Z) - A Comparative Study of Watering Hole Attack Detection Using Supervised Neural Network [0.0]
This study explores the nefarious tactic known as "watering hole attacks using supervised neural networks to detect and prevent these attacks.
The neural network identifies patterns in website behavior and network traffic associated with such attacks.
In terms of prevention, the model successfully stops 95% of attacks, providing robust user protection.
arXiv Detail & Related papers (2023-11-25T13:30:03Z) - Application of BadNets in Spam Filters [1.5755923640031848]
We design backdoor attacks in the domain of spam filtering.
We highlight the need for careful consideration and evaluation of the models used in spam filters.
arXiv Detail & Related papers (2023-07-18T21:39:39Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
Adrial attacks and defenses in machine learning and deep neural network have been gaining significant attention.
This survey provides a comprehensive overview of the recent advancements in the field of adversarial attack and defense techniques.
New avenues of attack are also explored, including search-based, decision-based, drop-based, and physical-world attacks.
arXiv Detail & Related papers (2023-03-11T04:19:31Z) - Downlink Power Allocation in Massive MIMO via Deep Learning: Adversarial
Attacks and Training [62.77129284830945]
This paper considers a regression problem in a wireless setting and shows that adversarial attacks can break the DL-based approach.
We also analyze the effectiveness of adversarial training as a defensive technique in adversarial settings and show that the robustness of DL-based wireless system against attacks improves significantly.
arXiv Detail & Related papers (2022-06-14T04:55:11Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Deep convolutional forest: a dynamic deep ensemble approach for spam
detection in text [219.15486286590016]
This paper introduces a dynamic deep ensemble model for spam detection that adjusts its complexity and extracts features automatically.
As a result, the model achieved high precision, recall, f1-score and accuracy of 98.38%.
arXiv Detail & Related papers (2021-10-10T17:19:37Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
This paper summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques.
It is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain.
arXiv Detail & Related papers (2020-07-05T18:22:40Z) - Adversarial Deep Ensemble: Evasion Attacks and Defenses for Malware
Detection [8.551227913472632]
We propose a new attack approach, named mixture of attacks, to perturb a malware example without ruining its malicious functionality.
This naturally leads to a new instantiation of adversarial training, which is further geared to enhancing the ensemble of deep neural networks.
We evaluate defenses using Android malware detectors against 26 different attacks upon two practical datasets.
arXiv Detail & Related papers (2020-06-30T05:56:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.