Adversarial Deep Ensemble: Evasion Attacks and Defenses for Malware
Detection
- URL: http://arxiv.org/abs/2006.16545v1
- Date: Tue, 30 Jun 2020 05:56:33 GMT
- Title: Adversarial Deep Ensemble: Evasion Attacks and Defenses for Malware
Detection
- Authors: Deqiang Li and Qianmu Li
- Abstract summary: We propose a new attack approach, named mixture of attacks, to perturb a malware example without ruining its malicious functionality.
This naturally leads to a new instantiation of adversarial training, which is further geared to enhancing the ensemble of deep neural networks.
We evaluate defenses using Android malware detectors against 26 different attacks upon two practical datasets.
- Score: 8.551227913472632
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Malware remains a big threat to cyber security, calling for machine learning
based malware detection. While promising, such detectors are known to be
vulnerable to evasion attacks. Ensemble learning typically facilitates
countermeasures, while attackers can leverage this technique to improve attack
effectiveness as well. This motivates us to investigate which kind of
robustness the ensemble defense or effectiveness the ensemble attack can
achieve, particularly when they combat with each other. We thus propose a new
attack approach, named mixture of attacks, by rendering attackers capable of
multiple generative methods and multiple manipulation sets, to perturb a
malware example without ruining its malicious functionality. This naturally
leads to a new instantiation of adversarial training, which is further geared
to enhancing the ensemble of deep neural networks. We evaluate defenses using
Android malware detectors against 26 different attacks upon two practical
datasets. Experimental results show that the new adversarial training
significantly enhances the robustness of deep neural networks against a wide
range of attacks, ensemble methods promote the robustness when base classifiers
are robust enough, and yet ensemble attacks can evade the enhanced malware
detectors effectively, even notably downgrading the VirusTotal service.
Related papers
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
We propose MASKDROID, a powerful detector with a strong discriminative ability to identify malware.
We introduce a masking mechanism into the Graph Neural Network based framework, forcing MASKDROID to recover the whole input graph.
This strategy enables the model to understand the malicious semantics and learn more stable representations, enhancing its robustness against adversarial attacks.
arXiv Detail & Related papers (2024-09-29T07:22:47Z) - Leveraging Reinforcement Learning in Red Teaming for Advanced Ransomware Attack Simulations [7.361316528368866]
This paper proposes a novel approach utilizing reinforcement learning (RL) to simulate ransomware attacks.
By training an RL agent in a simulated environment mirroring real-world networks, effective attack strategies can be learned quickly.
Experimental results on a 152-host example network confirm the effectiveness of the proposed approach.
arXiv Detail & Related papers (2024-06-25T14:16:40Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
We develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection.
Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables.
We are the first to offer certified robustness in the realm of static detection of malware executables.
arXiv Detail & Related papers (2023-03-20T17:25:22Z) - PAD: Towards Principled Adversarial Malware Detection Against Evasion
Attacks [17.783849474913726]
We propose a new adversarial training framework, termed Principled Adversarial Malware Detection (PAD)
PAD lays on a learnable convex measurement that quantifies distribution-wise discrete perturbations to protect malware detectors from adversaries.
PAD can harden ML-based malware detection against 27 evasion attacks with detection accuracies greater than 83.45%.
It matches or outperforms many anti-malware scanners in VirusTotal against realistic adversarial malware.
arXiv Detail & Related papers (2023-02-22T12:24:49Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
We introduce epsilon-illusory, a novel form of adversarial attack on sequential decision-makers.
Compared to existing attacks, we empirically find epsilon-illusory to be significantly harder to detect with automated methods.
Our findings suggest the need for better anomaly detectors, as well as effective hardware- and system-level defenses.
arXiv Detail & Related papers (2022-07-20T19:49:09Z) - RobustSense: Defending Adversarial Attack for Secure Device-Free Human
Activity Recognition [37.387265457439476]
We propose a novel learning framework, RobustSense, to defend common adversarial attacks.
Our method works well on wireless human activity recognition and person identification systems.
arXiv Detail & Related papers (2022-04-04T15:06:03Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
We study blackbox adversarial attacks on network classifiers.
We argue that attacker-defender fixed points are themselves general-sum games with complex phase transitions.
We show that a continual learning approach is required to study attacker-defender dynamics.
arXiv Detail & Related papers (2021-11-23T23:42:16Z) - Binary Black-box Evasion Attacks Against Deep Learning-based Static
Malware Detectors with Adversarial Byte-Level Language Model [11.701290164823142]
MalRNN is a novel approach to automatically generate evasive malware variants without restrictions.
MalRNN effectively evades three recent deep learning-based malware detectors and outperforms current benchmark methods.
arXiv Detail & Related papers (2020-12-14T22:54:53Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
We show how an attacker can launch a sophisticated and efficient poisoning attack targeting the dataset used to train a malware classifier.
As opposed to other poisoning attacks in the malware detection domain, our attack does not focus on malware families but rather on specific malware instances that contain an implanted trigger.
We propose a comprehensive detection approach that could serve as a future sophisticated defense against this newly discovered severe threat.
arXiv Detail & Related papers (2020-10-30T15:27:44Z) - Deflecting Adversarial Attacks [94.85315681223702]
We present a new approach towards ending this cycle where we "deflect" adversarial attacks by causing the attacker to produce an input that resembles the attack's target class.
We first propose a stronger defense based on Capsule Networks that combines three detection mechanisms to achieve state-of-the-art detection performance.
arXiv Detail & Related papers (2020-02-18T06:59:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.