An Adaptive Data-Resilient Multi-Modal Framework for Hierarchical Multi-Label Book Genre Identification
- URL: http://arxiv.org/abs/2505.03839v1
- Date: Mon, 05 May 2025 05:25:08 GMT
- Title: An Adaptive Data-Resilient Multi-Modal Framework for Hierarchical Multi-Label Book Genre Identification
- Authors: Utsav Kumar Nareti, Soumi Chattopadhyay, Prolay Mallick, Suraj Kumar, Ayush Vikas Daga, Chandranath Adak, Adarsh Wase, Arjab Roy,
- Abstract summary: This paper introduces IMAGINE, a framework designed to address the complexities of genre classification.<n>IMAGINE extracts robust feature representations from multiple modalities and dynamically selects the most informative sources based on data availability.<n>A key feature of our framework is its resilience to incomplete data, enabling accurate predictions even when certain modalities, such as text, images, or metadata, are missing or incomplete.
- Score: 0.3656826837859035
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identifying the finer details of a book's genres enhances user experience by enabling efficient book discovery and personalized recommendations, ultimately improving reader engagement and satisfaction. It also provides valuable insights into market trends and consumer preferences, allowing publishers and marketers to make data-driven decisions regarding book production and marketing strategies. While traditional book genre classification methods primarily rely on review data or textual analysis, incorporating additional modalities, such as book covers, blurbs, and metadata, can offer richer context and improve prediction accuracy. However, the presence of incomplete or noisy information across these modalities presents a significant challenge. This paper introduces IMAGINE (Intelligent Multi-modal Adaptive Genre Identification NEtwork), a framework designed to address these complexities. IMAGINE extracts robust feature representations from multiple modalities and dynamically selects the most informative sources based on data availability. It employs a hierarchical classification strategy to capture genre relationships and remains adaptable to varying input conditions. Additionally, we curate a hierarchical genre classification dataset that structures genres into a well-defined taxonomy, accommodating the diverse nature of literary works. IMAGINE integrates information from multiple sources and assigns multiple genre labels to each book, ensuring a more comprehensive classification. A key feature of our framework is its resilience to incomplete data, enabling accurate predictions even when certain modalities, such as text, images, or metadata, are missing or incomplete. Experimental results show that IMAGINE outperformed existing baselines in genre classification accuracy, particularly in scenarios with insufficient modality-specific data.
Related papers
- Generative Retrieval for Book search [106.67655212825025]
We propose an effective Generative retrieval framework for Book Search.<n>It features two main components: data augmentation and outline-oriented book encoding.<n>Experiments on a proprietary Baidu dataset demonstrate that GBS outperforms strong baselines.
arXiv Detail & Related papers (2025-01-19T12:57:13Z) - NativE: Multi-modal Knowledge Graph Completion in the Wild [51.80447197290866]
We propose a comprehensive framework NativE to achieve MMKGC in the wild.
NativE proposes a relation-guided dual adaptive fusion module that enables adaptive fusion for any modalities.
We construct a new benchmark called WildKGC with five datasets to evaluate our method.
arXiv Detail & Related papers (2024-03-28T03:04:00Z) - Harnessing the Power of Beta Scoring in Deep Active Learning for
Multi-Label Text Classification [6.662167018900634]
Our study introduces a novel deep active learning strategy, capitalizing on the Beta family of proper scoring rules within the Expected Loss Reduction framework.
It computes the expected increase in scores using the Beta Scoring Rules, which are then transformed into sample vector representations.
Comprehensive evaluations across both synthetic and real datasets reveal our method's capability to often outperform established acquisition techniques in multi-label text classification.
arXiv Detail & Related papers (2024-01-15T00:06:24Z) - Panel Transitions for Genre Analysis in Visual Narratives [1.320904960556043]
We present a novel approach to do a multi-modal analysis of genre based on comics and manga-style visual narratives.
We highlight some of the limitations and challenges of our existing computational approaches in modeling subjective labels.
arXiv Detail & Related papers (2023-12-14T08:05:09Z) - infoVerse: A Universal Framework for Dataset Characterization with
Multidimensional Meta-information [68.76707843019886]
infoVerse is a universal framework for dataset characterization.
infoVerse captures multidimensional characteristics of datasets by incorporating various model-driven meta-information.
In three real-world applications (data pruning, active learning, and data annotation), the samples chosen on infoVerse space consistently outperform strong baselines.
arXiv Detail & Related papers (2023-05-30T18:12:48Z) - Efficient Classification of Long Documents Using Transformers [13.927622630633344]
We evaluate the relative efficacy measured against various baselines and diverse datasets.
Results show that more complex models often fail to outperform simple baselines and yield inconsistent performance across datasets.
arXiv Detail & Related papers (2022-03-21T18:36:18Z) - Selecting the suitable resampling strategy for imbalanced data
classification regarding dataset properties [62.997667081978825]
In many application domains such as medicine, information retrieval, cybersecurity, social media, etc., datasets used for inducing classification models often have an unequal distribution of the instances of each class.
This situation, known as imbalanced data classification, causes low predictive performance for the minority class examples.
Oversampling and undersampling techniques are well-known strategies to deal with this problem by balancing the number of examples of each class.
arXiv Detail & Related papers (2021-12-15T18:56:39Z) - Generating More Pertinent Captions by Leveraging Semantics and Style on
Multi-Source Datasets [56.018551958004814]
This paper addresses the task of generating fluent descriptions by training on a non-uniform combination of data sources.
Large-scale datasets with noisy image-text pairs provide a sub-optimal source of supervision.
We propose to leverage and separate semantics and descriptive style through the incorporation of a style token and keywords extracted through a retrieval component.
arXiv Detail & Related papers (2021-11-24T19:00:05Z) - Automatic Validation of Textual Attribute Values in E-commerce Catalog
by Learning with Limited Labeled Data [61.789797281676606]
We propose a novel meta-learning latent variable approach, called MetaBridge.
It can learn transferable knowledge from a subset of categories with limited labeled data.
It can capture the uncertainty of never-seen categories with unlabeled data.
arXiv Detail & Related papers (2020-06-15T21:31:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.