Deep Q-Network (DQN) multi-agent reinforcement learning (MARL) for Stock Trading
- URL: http://arxiv.org/abs/2505.03949v1
- Date: Tue, 06 May 2025 19:55:57 GMT
- Title: Deep Q-Network (DQN) multi-agent reinforcement learning (MARL) for Stock Trading
- Authors: John Christopher Tidwell, John Storm Tidwell,
- Abstract summary: This project addresses the challenge of automated stock trading, where traditional methods and direct reinforcement learning (RL) struggle with market noise, complexity, and generalization.<n>Our proposed solution is an integrated deep learning framework combining a Convolutional Neural Network (CNN) to identify patterns in technical indicators formatted as images, a Long Short-Term Memory (LSTM) network to capture temporal dependencies across both price history and technical indicators, and a Deep Q-Network (DQN) agent which learns the optimal trading policy (buy, sell, hold) based on the features extracted by the CNN and LSTM.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This project addresses the challenge of automated stock trading, where traditional methods and direct reinforcement learning (RL) struggle with market noise, complexity, and generalization. Our proposed solution is an integrated deep learning framework combining a Convolutional Neural Network (CNN) to identify patterns in technical indicators formatted as images, a Long Short-Term Memory (LSTM) network to capture temporal dependencies across both price history and technical indicators, and a Deep Q-Network (DQN) agent which learns the optimal trading policy (buy, sell, hold) based on the features extracted by the CNN and LSTM.
Related papers
- A Deep Reinforcement Learning Approach to Automated Stock Trading, using xLSTM Networks [0.26249027950824505]
This study explores the usage of Extended Long Short Term Memory (xLSTM) network in combination with a deep reinforcement learning (DRL) approach for automated stock trading.<n>Our proposed method utilizes xLSTM networks in both actor and critic components, enabling effective handling of time series data and dynamic market environments.
arXiv Detail & Related papers (2025-03-12T10:56:03Z) - A Hierarchical conv-LSTM and LLM Integrated Model for Holistic Stock Forecasting [0.0]
This paper proposes a novel Two-Level Conv-LSTM Neural Network integrated with a Large Language Model (LLM) for comprehensive stock advising.
In the first level, convolutional layers are employed to identify local patterns in historical stock prices and technical indicators, followed by LSTM layers to capture the temporal dynamics.
The second level integrates the output with an LLM that analyzes sentiment and contextual information from textual data, providing a holistic view of market conditions.
arXiv Detail & Related papers (2024-09-30T17:04:42Z) - A Novel Deep Reinforcement Learning Based Automated Stock Trading System
Using Cascaded LSTM Networks [3.593955557310285]
We propose a DRL based stock trading system using cascaded LSTM, which first uses LSTM to extract the time-series features from stock daily data, and then the features extracted are fed to the agent for training.
Experiments in DJI in the US market and SSE50 in the Chinese stock market show that our model outperforms previous baseline models in terms of cumulative returns and Sharp ratio.
arXiv Detail & Related papers (2022-12-06T03:22:06Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs)
Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization.
We present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs.
arXiv Detail & Related papers (2022-11-29T13:32:38Z) - Teal: Learning-Accelerated Optimization of WAN Traffic Engineering [68.7863363109948]
We present Teal, a learning-based TE algorithm that leverages the parallel processing power of GPUs to accelerate TE control.
To reduce the problem scale and make learning tractable, Teal employs a multi-agent reinforcement learning (RL) algorithm to independently allocate each traffic demand.
Compared with other TE acceleration schemes, Teal satisfies 6--32% more traffic demand and yields 197--625x speedups.
arXiv Detail & Related papers (2022-10-25T04:46:30Z) - Trading with the Momentum Transformer: An Intelligent and Interpretable
Architecture [2.580765958706854]
We introduce the Momentum Transformer, an attention-based architecture which outperforms the benchmarks.
We observe remarkable structure in the attention patterns, with significant peaks of importance at momentum turning points.
Through the addition of an interpretable variable selection network, we observe how CPD helps our model to move away from trading predominantly on daily returns data.
arXiv Detail & Related papers (2021-12-16T00:04:12Z) - Low-bit Quantization of Recurrent Neural Network Language Models Using
Alternating Direction Methods of Multipliers [67.688697838109]
This paper presents a novel method to train quantized RNNLMs from scratch using alternating direction methods of multipliers (ADMM)
Experiments on two tasks suggest the proposed ADMM quantization achieved a model size compression factor of up to 31 times over the full precision baseline RNNLMs.
arXiv Detail & Related papers (2021-11-29T09:30:06Z) - Semi-supervised Network Embedding with Differentiable Deep Quantisation [81.49184987430333]
We develop d-SNEQ, a differentiable quantisation method for network embedding.
d-SNEQ incorporates a rank loss to equip the learned quantisation codes with rich high-order information.
It is able to substantially compress the size of trained embeddings, thus reducing storage footprint and accelerating retrieval speed.
arXiv Detail & Related papers (2021-08-20T11:53:05Z) - Online learning of windmill time series using Long Short-term Cognitive
Networks [58.675240242609064]
The amount of data generated on windmill farms makes online learning the most viable strategy to follow.
We use Long Short-term Cognitive Networks (LSTCNs) to forecast windmill time series in online settings.
Our approach reported the lowest forecasting errors with respect to a simple RNN, a Long Short-term Memory, a Gated Recurrent Unit, and a Hidden Markov Model.
arXiv Detail & Related papers (2021-07-01T13:13:24Z) - Model-Based Machine Learning for Communications [110.47840878388453]
We review existing strategies for combining model-based algorithms and machine learning from a high level perspective.
We focus on symbol detection, which is one of the fundamental tasks of communication receivers.
arXiv Detail & Related papers (2021-01-12T19:55:34Z) - Detecting and adapting to crisis pattern with context based Deep
Reinforcement Learning [6.224519494738852]
We present an innovative DRL framework consisting in two sub-networks fed respectively with portfolio strategies past performances and standard deviations as well as additional contextual features.
Results on test set show this approach substantially over-performs traditional portfolio optimization methods like Markowitz and is able to detect and anticipate crisis like the current Covid one.
arXiv Detail & Related papers (2020-09-07T12:11:08Z) - Deep Stock Predictions [58.720142291102135]
We consider the design of a trading strategy that performs portfolio optimization using Long Short Term Memory (LSTM) neural networks.
We then customize the loss function used to train the LSTM to increase the profit earned.
We find the LSTM model with the customized loss function to have an improved performance in the training bot over a regressive baseline such as ARIMA.
arXiv Detail & Related papers (2020-06-08T23:37:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.