論文の概要: SEVA: Leveraging Single-Step Ensemble of Vicinal Augmentations for Test-Time Adaptation
- arxiv url: http://arxiv.org/abs/2505.04087v1
- Date: Wed, 07 May 2025 02:58:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-08 19:07:35.961206
- Title: SEVA: Leveraging Single-Step Ensemble of Vicinal Augmentations for Test-Time Adaptation
- Title(参考訳): SEVA: テスト時間適応のためのビシナル拡張のワンステップアンサンブル
- Authors: Zixuan Hu, Yichun Hu, Ling-Yu Duan,
- Abstract要約: テスト時間適応(TTA)は、推論中の迅速なモデル適応を通じて、分散シフトに対するモデルロバスト性を高めることを目的としている。
拡張戦略は、信頼性のあるサンプルの可能性を効果的に解き放つことができるが、急速に増大する計算コストは、彼らのリアルタイムアプリケーションを妨げる。
本稿では, 計算負担を増大させることなく, データの増大を生かして, 新たなTTAアプローチであるSingle-step Ensemble of Vicinal Augmentations(SEVA)を提案する。
- 参考スコア(独自算出の注目度): 29.441669360316418
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Test-Time adaptation (TTA) aims to enhance model robustness against distribution shifts through rapid model adaptation during inference. While existing TTA methods often rely on entropy-based unsupervised training and achieve promising results, the common practice of a single round of entropy training is typically unable to adequately utilize reliable samples, hindering adaptation efficiency. In this paper, we discover augmentation strategies can effectively unleash the potential of reliable samples, but the rapidly growing computational cost impedes their real-time application. To address this limitation, we propose a novel TTA approach named Single-step Ensemble of Vicinal Augmentations (SEVA), which can take advantage of data augmentations without increasing the computational burden. Specifically, instead of explicitly utilizing the augmentation strategy to generate new data, SEVA develops a theoretical framework to explore the impacts of multiple augmentations on model adaptation and proposes to optimize an upper bound of the entropy loss to integrate the effects of multiple rounds of augmentation training into a single step. Furthermore, we discover and verify that using the upper bound as the loss is more conducive to the selection mechanism, as it can effectively filter out harmful samples that confuse the model. Combining these two key advantages, the proposed efficient loss and a complementary selection strategy can simultaneously boost the potential of reliable samples and meet the stringent time requirements of TTA. The comprehensive experiments on various network architectures across challenging testing scenarios demonstrate impressive performances and the broad adaptability of SEVA. The code will be publicly available.
- Abstract(参考訳): テスト時間適応(TTA)は、推論中の迅速なモデル適応を通じて、分散シフトに対するモデルロバスト性を高めることを目的としている。
既存のTTA法は、しばしばエントロピーに基づく教師なしのトレーニングに頼り、有望な結果を得るが、単一のエントロピー訓練の一般的な実践は、信頼性の高いサンプルを適切に活用することができず、適応効率を損なう。
本稿では,信頼度の高いサンプルの可能性を効果的に解き放つことができるが,急速に増大する計算コストは,そのリアルタイム応用を阻害する。
この制限に対処するために、計算負担を増大させることなくデータ拡張を活用できる、SEVA(Single-step Ensemble of Vicinal Augmentations)と呼ばれる新しいTTAアプローチを提案する。
具体的には、新しいデータを生成するために拡張戦略を明示的に活用する代わりに、モデル適応に対する複数の拡張の影響を探索する理論的な枠組みを開発し、エントロピー損失の上限を最適化し、複数ラウンドの強化訓練の効果を単一のステップに統合することを提案する。
さらに, モデルを混乱させる有害サンプルを効果的に除去できるため, 損失としての上界を用いることが選択機構に寄与することを発見し, 検証する。
これら2つの重要な利点を組み合わせることで、提案した効率的な損失と相補的な選択戦略は、信頼性のあるサンプルの可能性を同時に高め、TTAの厳しい時間要件を満たすことができる。
挑戦的なテストシナリオにわたるさまざまなネットワークアーキテクチャに関する包括的な実験は、印象的なパフォーマンスと、SEVAの広範な適応性を示している。
コードは公開されます。
関連論文リスト
- MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
テスト時間適応(TTA)は、モデルの一般化性を高めるための有望なパラダイムとして登場した。
本稿では,Met-In-The-MiddleをベースとしたMITAを提案する。
論文 参考訳(メタデータ) (2024-10-12T07:02:33Z) - ETAGE: Enhanced Test Time Adaptation with Integrated Entropy and Gradient Norms for Robust Model Performance [18.055032898349438]
テスト時間適応(TTA)は、トレーニング分布から逸脱した未確認のテストデータを扱うために、ディープラーニングモデルを備えている。
本稿では,エントロピー最小化と勾配ノルム,PLPDを統合した改良TTA手法ETAGEを紹介する。
提案手法は,高エントロピーと高勾配ノルムを適応から組み合わせることで,不安定を生じにくいサンプルを優先する。
論文 参考訳(メタデータ) (2024-09-14T01:25:52Z) - Enhancing Test Time Adaptation with Few-shot Guidance [35.13317598777832]
深層ニューラルネットワークは、トレーニング(ソース)とテスト(ターゲット)データのドメインシフトに直面しながら、大きなパフォーマンス低下に直面することが多い。
TTA(Test Time Adaptation)法は,事前学習したソースモデルを用いて,配信外ストリーミングターゲットデータを処理する手法として提案されている。
本稿では,Few-Shot Test Time Adaptation (FS-TTA) を開発した。
論文 参考訳(メタデータ) (2024-09-02T15:50:48Z) - Test-Time Model Adaptation with Only Forward Passes [68.11784295706995]
テストタイム適応は、トレーニング済みのモデルを、潜在的に分布シフトのある未確認テストサンプルに適応させるのに有効であることが証明されている。
テスト時間フォワード最適化適応法(FOA)を提案する。
FOAは量子化された8ビットのViTで動作し、32ビットのViTで勾配ベースのTENTより優れ、ImageNet-Cで最大24倍のメモリ削減を実現する。
論文 参考訳(メタデータ) (2024-04-02T05:34:33Z) - REALM: Robust Entropy Adaptive Loss Minimization for Improved
Single-Sample Test-Time Adaptation [5.749155230209001]
フルテスト時間適応(F-TTA)は、列車とテストデータの分散シフトによる性能損失を軽減することができる。
本稿では,F-TTAの雑音に対する堅牢性向上のための一般的な枠組みについて述べる。
論文 参考訳(メタデータ) (2023-09-07T18:44:58Z) - Efficient Test-Time Model Adaptation without Forgetting [60.36499845014649]
テストタイム適応は、トレーニングとテストデータの間の潜在的な分散シフトに取り組むことを目指している。
信頼性および非冗長なサンプルを同定するためのアクティブなサンプル選択基準を提案する。
また、重要なモデルパラメータを劇的な変化から制約するFisher regularizerを導入します。
論文 参考訳(メタデータ) (2022-04-06T06:39:40Z) - Listen, Adapt, Better WER: Source-free Single-utterance Test-time
Adaptation for Automatic Speech Recognition [65.84978547406753]
Test-time Adaptationは、ソースドメインでトレーニングされたモデルに適応して、テストサンプルの予測を改善することを目的としている。
単一発話テスト時間適応 (SUTA) は音声領域における最初のTTA研究である。
論文 参考訳(メタデータ) (2022-03-27T06:38:39Z) - Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited
Data [125.7135706352493]
GAN(Generative Adversarial Network)は、高忠実度画像を合成するために、訓練に十分なデータを必要とする。
近年の研究では、差別者の過度な適合により、限られたデータでGANを訓練することは困難であることが示されている。
本稿では,APA (Adaptive Pseudo Augmentation) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-12T18:13:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。