論文の概要: SMMT: Siamese Motion Mamba with Self-attention for Thermal Infrared Target Tracking
- arxiv url: http://arxiv.org/abs/2505.04088v3
- Date: Wed, 11 Jun 2025 14:19:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 04:22:26.07434
- Title: SMMT: Siamese Motion Mamba with Self-attention for Thermal Infrared Target Tracking
- Title(参考訳): SMMT 熱赤外目標追跡のための自己注意型シームズモーションマンバ
- Authors: Shang Zhang, Huanbin Zhang, Dali Feng, Yujie Cui, Ruoyan Xiong, Cen He,
- Abstract要約: 本論は, 小説『シームズ・モーション・マンバ・トラッカー』(SMMT)を提唱する。
動作特徴を抽出し,見落としているエッジの詳細を復元するために,Motion Mamba モジュールを Siamese アーキテクチャに導入する。
さらに、特に動きブルの目標に対して、トラッキング精度を向上させるために、動きエッジ認識の回帰損失を設計する。
- 参考スコア(独自算出の注目度): 0.32985979395737786
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Thermal infrared (TIR) object tracking often suffers from challenges such as target occlusion, motion blur, and background clutter, which significantly degrade the performance of trackers. To address these issues, this paper pro-poses a novel Siamese Motion Mamba Tracker (SMMT), which integrates a bidirectional state-space model and a self-attention mechanism. Specifically, we introduce the Motion Mamba module into the Siamese architecture to ex-tract motion features and recover overlooked edge details using bidirectional modeling and self-attention. We propose a Siamese parameter-sharing strate-gy that allows certain convolutional layers to share weights. This approach reduces computational redundancy while preserving strong feature represen-tation. In addition, we design a motion edge-aware regression loss to improve tracking accuracy, especially for motion-blurred targets. Extensive experi-ments are conducted on four TIR tracking benchmarks, including LSOTB-TIR, PTB-TIR, VOT-TIR2015, and VOT-TIR 2017. The results show that SMMT achieves superior performance in TIR target tracking.
- Abstract(参考訳): 熱赤外(TIR)物体追跡は、標的の閉塞、動きのぼかし、背景のぼかしといった課題に悩まされ、トラッカーの性能は著しく低下する。
これらの問題に対処するため,本稿では,双方向状態空間モデルと自己認識機構を統合した,新しいシメズ・モーション・マンバ・トラッカー(SMMT)を提案する。
具体的には、動作特徴を抽出し、双方向モデリングと自己注意を用いて見落としているエッジの詳細を復元するために、Motion Mamba モジュールを Siamese アーキテクチャに導入する。
我々は,特定の畳み込み層が重みを共有できる,シームズパラメータ共有戦略を提案する。
このアプローチは、強い特徴再現性を維持しながら、計算の冗長性を減少させる。
さらに、特に動きブルの目標に対して、トラッキング精度を向上させるために、動きエッジ認識の回帰損失を設計する。
LSOTB-TIR、TB-TIR、VOT-TIR2015、VOT-TIR 2017を含む4つのTIR追跡ベンチマークで大規模な実験が行われた。
その結果,SMMTはTIR目標追跡において優れた性能を示すことがわかった。
関連論文リスト
- FGSGT: Saliency-Guided Siamese Network Tracker Based on Key Fine-Grained Feature Information for Thermal Infrared Target Tracking [11.599952876425736]
そこで本稿では, キーきめ細かい特徴量に基づく新しいサリエンシ誘導型シームズネットワークトラッカーを提案する。
この設計は、浅い層から重要なグローバルな特徴を捉え、特徴の多様性を高め、きめ細かいインフォームの損失を最小限にする。
実験の結果,提案したトラッカーが最も精度が高く,成功率も高いことがわかった。
論文 参考訳(メタデータ) (2025-04-19T14:13:15Z) - Temporal Correlation Meets Embedding: Towards a 2nd Generation of JDE-based Real-Time Multi-Object Tracking [52.04679257903805]
共同検出・埋め込み(JDE)トラッカーは多目的追跡(MOT)タスクにおいて優れた性能を示した。
TCBTrackという名前のトラッカーは、複数の公開ベンチマークで最先端のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2024-07-19T07:48:45Z) - MM-Tracker: Motion Mamba with Margin Loss for UAV-platform Multiple Object Tracking [12.326023523101806]
無人航空機プラットフォームからの複数の物体追跡(MOT)には、効率的なモーションモデリングが必要である。
本研究では,ローカル・グローバル両方の動作特徴を探索するMotion Mamba Moduleを提案する。
また,動きのぼやけた物体の検出精度を効果的に向上するために,運動マージンの損失を設計する。
Motion Mambaモジュールとモーションマージンの損失に基づいて、提案したMM-Trackerは、2つの広くオープンソースUAV-MOTデータセットで最先端のデータを上回ります。
論文 参考訳(メタデータ) (2024-07-15T07:13:27Z) - Mamba-FETrack: Frame-Event Tracking via State Space Model [14.610806117193116]
本稿では,状態空間モデル(SSM)に基づく新しいRGBイベント追跡フレームワークであるMamba-FETrackを提案する。
具体的には、RGBフレームとイベントストリームの特徴を抽出するために、2つのモダリティ固有のMambaバックボーンネットワークを採用する。
FELTとFE108データセットの大規模な実験により、提案したトラッカーの有効性と有効性を完全に検証した。
論文 参考訳(メタデータ) (2024-04-28T13:12:49Z) - Spatio-Temporal Bi-directional Cross-frame Memory for Distractor Filtering Point Cloud Single Object Tracking [2.487142846438629]
LIDARポイント内の1つのオブジェクトトラッキングは、コンピュータビジョンにおける重要なタスクである。
既存の手法は、ネットワーク経由の外観マッチングのみに依存するか、連続したフレームからの情報を利用するが、重大な課題に遭遇する。
我々は、これらの課題を緩和するために、STMD-Trackerという、革新的なクロスフレームバイテンポラルモーショントラッカーを設計する。
論文 参考訳(メタデータ) (2024-03-23T13:15:44Z) - MotionTrack: Learning Motion Predictor for Multiple Object Tracking [68.68339102749358]
本研究では,学習可能なモーション予測器を中心に,新しいモーショントラッカーであるMotionTrackを紹介する。
実験結果から、MotionTrackはDancetrackやSportsMOTといったデータセット上での最先端のパフォーマンスを示す。
論文 参考訳(メタデータ) (2023-06-05T04:24:11Z) - An Effective Motion-Centric Paradigm for 3D Single Object Tracking in
Point Clouds [50.19288542498838]
LiDARポイントクラウド(LiDAR SOT)における3Dシングルオブジェクトトラッキングは、自動運転において重要な役割を果たす。
現在のアプローチはすべて、外観マッチングに基づくシームズパラダイムに従っている。
我々は新たな視点からLiDAR SOTを扱うための動き中心のパラダイムを導入する。
論文 参考訳(メタデータ) (2023-03-21T17:28:44Z) - Probabilistic Tracklet Scoring and Inpainting for Multiple Object
Tracking [83.75789829291475]
本稿では,トラックレット提案の確率的自己回帰運動モデルを提案する。
これは、我々のモデルを訓練して、自然のトラックレットの基盤となる分布を学習することで達成される。
我々の実験は、挑戦的なシーケンスにおける物体の追跡におけるアプローチの優位性を実証している。
論文 参考訳(メタデータ) (2020-12-03T23:59:27Z) - Jointly Modeling Motion and Appearance Cues for Robust RGB-T Tracking [85.333260415532]
我々はRGBと熱(T)の両モードの融合重量マップを推定する新しい後期融合法を開発した。
外観キューが信頼できない場合には、動作キューを考慮に入れ、トラッカーを堅牢にする。
最近の3つのRGB-T追跡データセットの多くの結果から、提案したトラッカーは他の最先端のアルゴリズムよりも大幅に性能が向上していることが示された。
論文 参考訳(メタデータ) (2020-07-04T08:11:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。