Facilitating Trustworthy Human-Agent Collaboration in LLM-based Multi-Agent System oriented Software Engineering
- URL: http://arxiv.org/abs/2505.04251v1
- Date: Wed, 07 May 2025 08:55:15 GMT
- Title: Facilitating Trustworthy Human-Agent Collaboration in LLM-based Multi-Agent System oriented Software Engineering
- Authors: Krishna Ronanki,
- Abstract summary: Multi-agent autonomous systems (MAS) are better at addressing challenges that spans across multiple domains than singular autonomous agents.<n>The state-of-the-art research on MAS within software engineering (SE) focuses on integrating LLMs at the core of autonomous agents to create LMA systems.<n>One of the major challenges is the strategic allocation of tasks between humans and the LMA system in a trustworthy manner.<n>A RACI-based framework is proposed in this work in progress article, along with implementation guidelines and an example implementation of the framework.
- Score: 3.8073142980733
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Multi-agent autonomous systems (MAS) are better at addressing challenges that spans across multiple domains than singular autonomous agents. This holds true within the field of software engineering (SE) as well. The state-of-the-art research on MAS within SE focuses on integrating LLMs at the core of autonomous agents to create LLM-based multi-agent autonomous (LMA) systems. However, the introduction of LMA systems into SE brings a plethora of challenges. One of the major challenges is the strategic allocation of tasks between humans and the LMA system in a trustworthy manner. To address this challenge, a RACI-based framework is proposed in this work in progress article, along with implementation guidelines and an example implementation of the framework. The proposed framework can facilitate efficient collaboration, ensure accountability, and mitigate potential risks associated with LLM-driven automation while aligning with the Trustworthy AI guidelines. The future steps for this work delineating the planned empirical validation method are also presented.
Related papers
- TRiSM for Agentic AI: A Review of Trust, Risk, and Security Management in LLM-based Agentic Multi-Agent Systems [2.462408812529728]
This review presents a structured analysis of textbfTrust, Risk, and Security Management (TRiSM) in the context of LLM-based Agentic Multi-Agent Systems (AMAS)<n>We begin by examining the conceptual foundations of Agentic AI and highlight its architectural distinctions from traditional AI agents.<n>We then adapt and extend the AI TRiSM framework for Agentic AI, structured around four key pillars: Explainability, ModelOps, Security, Privacy and Governance.
arXiv Detail & Related papers (2025-06-04T16:26:11Z) - A Trustworthy Multi-LLM Network: Challenges,Solutions, and A Use Case [59.58213261128626]
We propose a blockchain-enabled collaborative framework that connects multiple Large Language Models (LLMs) into a Trustworthy Multi-LLM Network (MultiLLMN)<n>This architecture enables the cooperative evaluation and selection of the most reliable and high-quality responses to complex network optimization problems.
arXiv Detail & Related papers (2025-05-06T05:32:46Z) - Towards Agentic Recommender Systems in the Era of Multimodal Large Language Models [75.4890331763196]
Recent breakthroughs in Large Language Models (LLMs) have led to the emergence of agentic AI systems.<n>LLM-based Agentic RS (LLM-ARS) can offer more interactive, context-aware, and proactive recommendations.
arXiv Detail & Related papers (2025-03-20T22:37:15Z) - When One LLM Drools, Multi-LLM Collaboration Rules [98.71562711695991]
We argue for multi-LLM collaboration to better represent the extensive diversity of data, skills, and people.<n>We organize existing multi-LLM collaboration methods into a hierarchy, based on the level of access and information exchange.<n>We envision multi-LLM collaboration as an essential path toward compositional intelligence and collaborative AI development.
arXiv Detail & Related papers (2025-02-06T21:13:44Z) - Agent-Oriented Planning in Multi-Agent Systems [54.429028104022066]
We propose AOP, a novel framework for agent-oriented planning in multi-agent systems.<n>In this study, we identify three critical design principles of agent-oriented planning, including solvability, completeness, and non-redundancy.<n> Extensive experiments demonstrate the advancement of AOP in solving real-world problems compared to both single-agent systems and existing planning strategies for multi-agent systems.
arXiv Detail & Related papers (2024-10-03T04:07:51Z) - Optimizing Collaboration of LLM based Agents for Finite Element Analysis [1.5039745292757671]
This paper investigates the interactions between multiple agents within Large Language Models (LLMs) in the context of programming and coding tasks.
We utilize the AutoGen framework to facilitate communication among agents, evaluating different configurations based on the success rates from 40 random runs for each setup.
arXiv Detail & Related papers (2024-08-23T23:11:08Z) - LLM-Based Multi-Agent Systems for Software Engineering: Literature Review, Vision and the Road Ahead [14.834072370183106]
This paper explores the transformative potential of integrating Large Language Models into Multi-Agent (LMA) systems.<n>By leveraging the collaborative and specialized abilities of multiple agents, LMA systems enable autonomous problem-solving, improve robustness, and provide scalable solutions for managing the complexity of real-world software projects.
arXiv Detail & Related papers (2024-04-07T07:05:40Z) - Large Multimodal Agents: A Survey [78.81459893884737]
Large language models (LLMs) have achieved superior performance in powering text-based AI agents.
There is an emerging research trend focused on extending these LLM-powered AI agents into the multimodal domain.
This review aims to provide valuable insights and guidelines for future research in this rapidly evolving field.
arXiv Detail & Related papers (2024-02-23T06:04:23Z) - Balancing Autonomy and Alignment: A Multi-Dimensional Taxonomy for
Autonomous LLM-powered Multi-Agent Architectures [0.0]
Large language models (LLMs) have revolutionized the field of artificial intelligence, endowing it with sophisticated language understanding and generation capabilities.
This paper proposes a comprehensive multi-dimensional taxonomy to analyze how autonomous LLM-powered multi-agent systems balance the dynamic interplay between autonomy and alignment.
arXiv Detail & Related papers (2023-10-05T16:37:29Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous Driving [84.31119464141631]
This work employs Large Language Models (LLMs) as a decision-making component for complex autonomous driving scenarios.<n>Extensive experiments demonstrate that our proposed method not only consistently surpasses baseline approaches in single-vehicle tasks, but also helps handle complex driving behaviors even multi-vehicle coordination.
arXiv Detail & Related papers (2023-10-04T17:59:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.