論文の概要: KERAIA: An Adaptive and Explainable Framework for Dynamic Knowledge Representation and Reasoning
- arxiv url: http://arxiv.org/abs/2505.04313v1
- Date: Wed, 07 May 2025 10:56:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-08 19:07:36.044992
- Title: KERAIA: An Adaptive and Explainable Framework for Dynamic Knowledge Representation and Reasoning
- Title(参考訳): KERAIA:動的知識表現と推論のための適応的で説明可能なフレームワーク
- Authors: Stephen Richard Varey, Alessandro Di Stefano, The Anh Han,
- Abstract要約: KERAIAはシンボリックナレッジエンジニアリングのための新しいフレームワークとソフトウェアプラットフォームである。
動的で複雑でコンテキストに敏感な環境で知識を表現、推論、実行するという永続的な課題に対処する。
- 参考スコア(独自算出の注目度): 46.85451489222176
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce KERAIA, a novel framework and software platform for symbolic knowledge engineering designed to address the persistent challenges of representing, reasoning with, and executing knowledge in dynamic, complex, and context-sensitive environments. The central research question that motivates this work is: How can unstructured, often tacit, human expertise be effectively transformed into computationally tractable algorithms that AI systems can efficiently utilise? KERAIA seeks to bridge this gap by building on foundational concepts such as Minsky's frame-based reasoning and K-lines, while introducing significant innovations. These include Clouds of Knowledge for dynamic aggregation, Dynamic Relations (DRels) for context-sensitive inheritance, explicit Lines of Thought (LoTs) for traceable reasoning, and Cloud Elaboration for adaptive knowledge transformation. This approach moves beyond the limitations of traditional, often static, knowledge representation paradigms. KERAIA is designed with Explainable AI (XAI) as a core principle, ensuring transparency and interpretability, particularly through the use of LoTs. The paper details the framework's architecture, the KSYNTH representation language, and the General Purpose Paradigm Builder (GPPB) to integrate diverse inference methods within a unified structure. We validate KERAIA's versatility, expressiveness, and practical applicability through detailed analysis of multiple case studies spanning naval warfare simulation, industrial diagnostics in water treatment plants, and strategic decision-making in the game of RISK. Furthermore, we provide a comparative analysis against established knowledge representation paradigms (including ontologies, rule-based systems, and knowledge graphs) and discuss the implementation aspects and computational considerations of the KERAIA platform.
- Abstract(参考訳): 本稿では,動的,複雑,文脈に敏感な環境下での知識の表現,推論,実行という課題に対処するために設計された,記号的知識工学のための新しいフレームワークおよびソフトウェアプラットフォームであるKERAIAを紹介する。
構造化されていない、しばしば暗黙的な人間の専門知識を、AIシステムが効率的に活用できる計算処理可能なアルゴリズムに効果的に変換するには、どうすればよいのか?
KERAIAはミンスキーのフレームベースの推論やKラインといった基本的な概念に基づいて、重要なイノベーションを導入し、このギャップを埋めようとしている。
ダイナミックアグリゲーションのためのClouds of Knowledge、コンテキストに敏感な継承のためのDynamic Relations (DRels)、トレース可能な推論のための明示的なLines of Thought (LoTs)、適応的な知識変換のためのCloud Elaborationなどがある。
このアプローチは、伝統的な、しばしば静的な知識表現パラダイムの限界を越えている。
KERAIAはExplainable AI(XAI)を基本原則として設計されており、特にLoTの使用による透明性と解釈性を保証する。
本稿では,フレームワークのアーキテクチャ,KSYNTH表現言語,GPPB(General Purpose Paradigm Builder)について詳述する。
我々は,海戦シミュレーション,水処理プラントの産業診断,RISKゲームにおける戦略的意思決定を対象とする複数のケーススタディの詳細な分析を通じて,KERAIAの汎用性,表現性,実用性を検証した。
さらに、確立した知識表現パラダイム(オントロジー、ルールベースシステム、知識グラフを含む)との比較分析を行い、KERAIAプラットフォームの実装側面と計算的考察について議論する。
関連論文リスト
- StructRAG: Boosting Knowledge Intensive Reasoning of LLMs via Inference-time Hybrid Information Structurization [94.31508613367296]
Retrieval-augmented Generation(RAG)は、大規模言語モデル(LLM)を効果的に強化する鍵となる手段である。
本稿では,手前のタスクに対して最適な構造型を識別し,元の文書をこの構造化形式に再構成し,その結果に基づいて回答を推測するStructRAGを提案する。
実験の結果、StructRAGは最先端のパフォーマンスを実現し、特に挑戦的なシナリオに優れていた。
論文 参考訳(メタデータ) (2024-10-11T13:52:44Z) - Categorical semiotics: Foundations for Knowledge Integration [0.0]
ディープラーニングアーキテクチャの定義と分析のための包括的なフレームワークを開発するという課題に取り組む。
我々の方法論は、ファジィ集合の宇宙の中で解釈されるエルレスマンのスケッチに類似したグラフィカル構造を用いる。
このアプローチは、決定論的および非決定論的ニューラルネットワーク設計の両方をエレガントに包含する統一理論を提供する。
論文 参考訳(メタデータ) (2024-04-01T23:19:01Z) - Hierarchical Invariance for Robust and Interpretable Vision Tasks at Larger Scales [54.78115855552886]
本稿では、畳み込みニューラルネットワーク(CNN)のような階層型アーキテクチャを用いて、オーバーコンプリート不変量を構築する方法を示す。
オーバーコンプリート性により、そのタスクはニューラルアーキテクチャサーチ(NAS)のような方法で適応的に形成される。
大規模で頑健で解釈可能な視覚タスクの場合、階層的不変表現は伝統的なCNNや不変量に対する効果的な代替物とみなすことができる。
論文 参考訳(メタデータ) (2024-02-23T16:50:07Z) - Generative retrieval-augmented ontologic graph and multi-agent
strategies for interpretive large language model-based materials design [0.0]
トランスフォーマーニューラルネットワークは、特に材料分析、設計、製造において、有望な能力を示す。
本稿では,教材の工学的分析を支援するツールとして,大規模言語モデル(LLM)の利用について検討する。
論文 参考訳(メタデータ) (2023-10-30T20:31:50Z) - A Probabilistic-Logic based Commonsense Representation Framework for
Modelling Inferences with Multiple Antecedents and Varying Likelihoods [5.87677276882675]
コモンセンス・ナレッジグラフ(英: Commonsense knowledge-graphs、CKG)は、テキストや環境入力で「推論」でき、知覚を超えた推論ができる機械を構築するための重要なリソースである。
本研究は,コモンセンス知識の表現方法として, (i) 複合的推論知識をモデル化し,様々な可能性で概念的信念を表現するための確率論的論理表現スキーム, (ii) 健全な概念関連関係を同定し,異なる概念レベルで信念を整理する階層的概念オントロジーを取り入れることにより, コモンセンス知識をより良く表現することができるかを検討する。
論文 参考訳(メタデータ) (2022-11-30T08:44:30Z) - Analogical Concept Memory for Architectures Implementing the Common
Model of Cognition [1.9417302920173825]
そこで我々は,Soar の新たなアナログ概念メモリを提案し,宣言的長期記憶の現在のシステムを強化した。
提案したメモリに実装されたアナログ学習手法は,多様な新しい概念を迅速に学習できることを実証する。
論文 参考訳(メタデータ) (2022-10-21T04:39:07Z) - Characterizing an Analogical Concept Memory for Architectures
Implementing the Common Model of Cognition [1.468003557277553]
そこで我々は,Soar の新たなアナログ概念メモリを提案し,宣言的長期記憶の現在のシステムを強化した。
提案したメモリに実装されたアナログ学習手法は,多様な新しい概念を迅速に学習できることを実証する。
論文 参考訳(メタデータ) (2020-06-02T21:54:03Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。