論文の概要: Generative retrieval-augmented ontologic graph and multi-agent
strategies for interpretive large language model-based materials design
- arxiv url: http://arxiv.org/abs/2310.19998v1
- Date: Mon, 30 Oct 2023 20:31:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-01 17:37:08.885312
- Title: Generative retrieval-augmented ontologic graph and multi-agent
strategies for interpretive large language model-based materials design
- Title(参考訳): 生成的検索型オントロジグラフとマルチエージェント戦略による大型言語モデルに基づく材料設計
- Authors: Markus J. Buehler
- Abstract要約: トランスフォーマーニューラルネットワークは、特に材料分析、設計、製造において、有望な能力を示す。
本稿では,教材の工学的分析を支援するツールとして,大規模言語モデル(LLM)の利用について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Transformer neural networks show promising capabilities, in particular for
uses in materials analysis, design and manufacturing, including their capacity
to work effectively with both human language, symbols, code, and numerical
data. Here we explore the use of large language models (LLMs) as a tool that
can support engineering analysis of materials, applied to retrieving key
information about subject areas, developing research hypotheses, discovery of
mechanistic relationships across disparate areas of knowledge, and writing and
executing simulation codes for active knowledge generation based on physical
ground truths. When used as sets of AI agents with specific features,
capabilities, and instructions, LLMs can provide powerful problem solution
strategies for applications in analysis and design problems. Our experiments
focus on using a fine-tuned model, MechGPT, developed based on training data in
the mechanics of materials domain. We first affirm how finetuning endows LLMs
with reasonable understanding of domain knowledge. However, when queried
outside the context of learned matter, LLMs can have difficulty to recall
correct information. We show how this can be addressed using
retrieval-augmented Ontological Knowledge Graph strategies that discern how the
model understands what concepts are important and how they are related.
Illustrated for a use case of relating distinct areas of knowledge - here,
music and proteins - such strategies can also provide an interpretable graph
structure with rich information at the node, edge and subgraph level. We
discuss nonlinear sampling strategies and agent-based modeling applied to
complex question answering, code generation and execution in the context of
automated force field development from actively learned Density Functional
Theory (DFT) modeling, and data analysis.
- Abstract(参考訳): トランスフォーマーニューラルネットワークは、特に材料分析、設計、製造において、人間の言語、記号、コード、数値データの両方で効果的に機能する能力を含む、有望な能力を示している。
本稿では,教材の工学的分析を支援するツールとして大規模言語モデル (LLM) の利用,主題領域の重要情報検索,研究仮説の展開,異なる知識領域にわたる機械的関係の発見,物理基底真理に基づく能動的知識生成のためのシミュレーションコードの作成と実行について検討する。
特定の機能、機能、インストラクションを備えたAIエージェントのセットとして使用される場合、LLMは分析および設計問題におけるアプリケーションのための強力な問題解決戦略を提供することができる。
本実験は,材料力学領域のトレーニングデータを基に開発した微調整モデルであるmechgptを用いて行った。
まず、ファインタニングがドメイン知識を合理的に理解してLLMを実現するかを確認します。
しかし、学習内容の文脈外でクエリを行うと、LLMは正しい情報を思い出すことが困難になる。
モデルがどのような概念を重要か,どのように関連しているかを理解するための,検索から導かれるオントロジナレッジグラフ戦略を用いて,これに対処する方法を示す。
このような戦略は、ノード、エッジ、サブグラフのレベルで豊富な情報を持つ解釈可能なグラフ構造を提供することもできる。
非線形サンプリング戦略とエージェントベースモデリングを複合質問応答に適用し,能動的学習密度汎関数理論(dft)モデリングとデータ解析から自動力場開発の文脈におけるコード生成と実行について検討した。
関連論文リスト
- GIVE: Structured Reasoning with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE)は、パラメトリックメモリと非パラメトリックメモリを統合する新しい推論フレームワークである。
本手法は,ゴールド回答検索ではなく,専門家の問題解決に類似した論理的・段階的推論手法を提案する。
論文 参考訳(メタデータ) (2024-10-11T03:05:06Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - Knowledge Tagging with Large Language Model based Multi-Agent System [17.53518487546791]
本稿では,従来のアルゴリズムの限界に対処するマルチエージェントシステムについて検討する。
我々は,従来の手法が抱えていた課題を克服する上で,LLMベースのマルチエージェントシステムの可能性を強調した。
論文 参考訳(メタデータ) (2024-09-12T21:39:01Z) - TopoChat: Enhancing Topological Materials Retrieval With Large Language Model and Multi-Source Knowledge [4.654635844923322]
大規模言語モデル (LLM) はテキスト生成タスクにおいて顕著な性能を示した。
TopoChatと呼ばれるトポロジカル材料のための対話システムを開発した。
TopoChatは、構造およびプロパティクエリ、マテリアルレコメンデーション、複雑なリレーショナル推論において優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2024-09-10T06:01:16Z) - Knowledge Tagging System on Math Questions via LLMs with Flexible Demonstration Retriever [48.5585921817745]
大きな言語モデル(LLM)は知識タグ付けタスクを自動化するために使われる。
算数問題における知識タグ付けタスクに対するゼロショットと少数ショットの結果の強い性能を示す。
強化学習に基づくデモレトリバーの提案により,異なるサイズのLLMの潜在能力を活用できた。
論文 参考訳(メタデータ) (2024-06-19T23:30:01Z) - Towards Next-Generation Urban Decision Support Systems through AI-Powered Construction of Scientific Ontology using Large Language Models -- A Case in Optimizing Intermodal Freight Transportation [1.6230958216521798]
本研究では,事前学習された大規模言語モデル(LLM)を活用する可能性について検討する。
推論コアとしてChatGPT APIを採用することで、自然言語処理、メソノロジーベースのプロンプトチューニング、トランスフォーマーを含む統合ワークフローを概説する。
我々の方法論の成果は、広く採用されているオントロジー言語(OWL、RDF、SPARQLなど)の知識グラフである。
論文 参考訳(メタデータ) (2024-05-29T16:40:31Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
大きな言語モデル(LLM)は印象的な生成能力を示すが、内部知識に依存すると幻覚に悩まされる。
検索拡張LDMは、外部知識においてLLMを基盤とする潜在的な解決策として出現している。
論文 参考訳(メタデータ) (2023-10-31T04:37:57Z) - MechGPT, a language-based strategy for mechanics and materials modeling
that connects knowledge across scales, disciplines and modalities [0.0]
我々は,Large Language Model (LLM) を用いて,質問応答対を原料から抽出し,微調整する。
得られたMechGPT LLM基盤モデルは、知識検索、様々な言語タスク、仮説生成、異なる領域にわたる知識の接続能力を調べるために、一連の計算実験で使用される。
論文 参考訳(メタデータ) (2023-10-16T14:29:35Z) - Iterative Zero-Shot LLM Prompting for Knowledge Graph Construction [104.29108668347727]
本稿では,最新の生成型大規模言語モデルの可能性を活用する,革新的な知識グラフ生成手法を提案する。
このアプローチは、新しい反復的なゼロショットと外部知識に依存しない戦略を含むパイプラインで伝達される。
我々は、我々の提案がスケーラブルで多目的な知識グラフ構築に適したソリューションであり、異なる新しい文脈に適用できると主張している。
論文 参考訳(メタデータ) (2023-07-03T16:01:45Z) - A Study of Situational Reasoning for Traffic Understanding [63.45021731775964]
トラフィック領域における状況推論のための3つの新しいテキストベースのタスクを考案する。
先行作業における言語推論タスクにまたがる一般化能力を示す知識強化手法を4つ採用する。
本稿では,データ分割におけるモデル性能の詳細な解析を行い,モデル予測を分類的に検討する。
論文 参考訳(メタデータ) (2023-06-05T01:01:12Z) - Exploring In-Context Learning Capabilities of Foundation Models for
Generating Knowledge Graphs from Text [3.114960935006655]
本論文は,知識グラフの自動構築と完成の技術をテキストから改善することを目的としている。
この文脈では、新しいパラダイムの1つは、言語モデルがプロンプトとともにそのまま使われる、コンテキスト内学習である。
論文 参考訳(メタデータ) (2023-05-15T17:10:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。