Detecting Concept Drift in Neural Networks Using Chi-squared Goodness of Fit Testing
- URL: http://arxiv.org/abs/2505.04318v1
- Date: Wed, 07 May 2025 11:04:47 GMT
- Title: Detecting Concept Drift in Neural Networks Using Chi-squared Goodness of Fit Testing
- Authors: Jacob Glenn Ayers, Buvaneswari A. Ramanan, Manzoor A. Khan,
- Abstract summary: Concept drift detection is a field dedicated to identifying statistical shifts that is underutilized in monitoring neural networks.<n>We introduce an application of the $chi2$ Goodness of Fit Hypothesis Test as a drift detection meta-algorithm applied to a multilayer perceptron, a convolutional neural network, and a transformer trained for machine vision.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: As the adoption of deep learning models has grown beyond human capacity for verification, meta-algorithms are needed to ensure reliable model inference. Concept drift detection is a field dedicated to identifying statistical shifts that is underutilized in monitoring neural networks that may encounter inference data with distributional characteristics diverging from their training data. Given the wide variety of model architectures, applications, and datasets, it is important that concept drift detection algorithms are adaptable to different inference scenarios. In this paper, we introduce an application of the $\chi^2$ Goodness of Fit Hypothesis Test as a drift detection meta-algorithm applied to a multilayer perceptron, a convolutional neural network, and a transformer trained for machine vision as they are exposed to simulated drift during inference. To that end, we demonstrate how unexpected drops in accuracy due to concept drift can be detected without directly examining the inference outputs. Our approach enhances safety by ensuring models are continually evaluated for reliability across varying conditions.
Related papers
- A Neighbor-Searching Discrepancy-based Drift Detection Scheme for Learning Evolving Data [40.00357483768265]
This work presents a novel real concept drift detection method based on Neighbor-Searching Discrepancy.
The proposed method is able to detect real concept drift with high accuracy while ignoring virtual drift.
It can also indicate the direction of the classification boundary change by identifying the invasion or retreat of a certain class.
arXiv Detail & Related papers (2024-05-23T04:03:36Z) - Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
A popular approach for estimating the predictive uncertainty of neural networks is to define a prior distribution over the network parameters.
We propose a scalable function-space variational inference method that allows incorporating prior information.
We show that the proposed method leads to state-of-the-art uncertainty estimation and predictive performance on a range of prediction tasks.
arXiv Detail & Related papers (2023-12-28T18:33:26Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
We introduce an interpretable paradigm for trajectory prediction that distributes the uncertainty among semantic concepts.
We validate our approach on real-world autonomous driving data, demonstrating superior performance over state-of-the-art baselines.
arXiv Detail & Related papers (2022-11-16T06:28:20Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Detecting Concept Drift With Neural Network Model Uncertainty [0.0]
Uncertainty Drift Detection (UDD) is able to detect drifts without access to true labels.
In contrast to input data-based drift detection, our approach considers the effects of the current input data on the properties of the prediction model.
We show that UDD outperforms other state-of-the-art strategies on two synthetic as well as ten real-world data sets for both regression and classification tasks.
arXiv Detail & Related papers (2021-07-05T08:56:36Z) - Bayesian Imaging With Data-Driven Priors Encoded by Neural Networks:
Theory, Methods, and Algorithms [2.266704469122763]
This paper proposes a new methodology for performing Bayesian inference in imaging inverse problems where the prior knowledge is available in the form of training data.
We establish the existence and well-posedness of the associated posterior moments under easily verifiable conditions.
A model accuracy analysis suggests that the Bayesian probability probabilities reported by the data-driven models are also remarkably accurate under a frequentist definition.
arXiv Detail & Related papers (2021-03-18T11:34:08Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Ramifications of Approximate Posterior Inference for Bayesian Deep
Learning in Adversarial and Out-of-Distribution Settings [7.476901945542385]
We show that Bayesian deep learning models on certain occasions marginally outperform conventional neural networks.
Preliminary investigations indicate the potential inherent role of bias due to choices of initialisation, architecture or activation functions.
arXiv Detail & Related papers (2020-09-03T16:58:15Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.