Hyperbolic Fuzzy $C$-Means with Adaptive Weight-based Filtering for Clustering in Non-Euclidean Spaces
- URL: http://arxiv.org/abs/2505.04335v1
- Date: Wed, 07 May 2025 11:32:53 GMT
- Title: Hyperbolic Fuzzy $C$-Means with Adaptive Weight-based Filtering for Clustering in Non-Euclidean Spaces
- Authors: Swagato Das, Arghya Pratihar, Swagatam Das,
- Abstract summary: Fuzzy $C$-Means (FCM) algorithm exhibits notable limitations in non-Euclidean spaces.<n>HypeFCM integrates the principles of fuzzy clustering with hyperbolic geometry.<n>HypeFCM significantly outperforms conventional fuzzy clustering methods in non-Euclidean settings.
- Score: 14.904264782690639
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Clustering algorithms play a pivotal role in unsupervised learning by identifying and grouping similar objects based on shared characteristics. While traditional clustering techniques, such as hard and fuzzy center-based clustering, have been widely used, they struggle with complex, high-dimensional, and non-Euclidean datasets. In particular, the Fuzzy $C$-Means (FCM) algorithm, despite its efficiency and popularity, exhibits notable limitations in non-Euclidean spaces. Euclidean spaces assume linear separability and uniform distance scaling, limiting their effectiveness in capturing complex, hierarchical, or non-Euclidean structures in fuzzy clustering. To overcome these challenges, we introduce Filtration-based Hyperbolic Fuzzy $C$-Means (HypeFCM), a novel clustering algorithm tailored for better representation of data relationships in non-Euclidean spaces. HypeFCM integrates the principles of fuzzy clustering with hyperbolic geometry and employs a weight-based filtering mechanism to improve performance. The algorithm initializes weights using a Dirichlet distribution and iteratively refines cluster centroids and membership assignments based on a hyperbolic metric in the Poincar\'e Disc model. Extensive experimental evaluations demonstrate that HypeFCM significantly outperforms conventional fuzzy clustering methods in non-Euclidean settings, underscoring its robustness and effectiveness.
Related papers
- Scalable Context-Preserving Model-Aware Deep Clustering for Hyperspectral Images [51.95768218975529]
Subspace clustering has become widely adopted for the unsupervised analysis of hyperspectral images (HSIs)<n>Recent model-aware deep subspace clustering methods often use a two-stage framework, involving the calculation of a self-representation matrix with complexity of O(n2), followed by spectral clustering.<n>We propose a scalable, context-preserving deep clustering method based on basis representation, which jointly captures local and non-local structures for efficient HSI clustering.
arXiv Detail & Related papers (2025-06-12T16:43:09Z) - Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - Consistent Spectral Clustering in Hyperbolic Spaces [16.75089998678061]
We propose a spectral clustering algorithm on Hyperbolic Spaces to represent complex data structures.<n>We show that our algorithm converges at least as fast as Spectral Clustering on Euclidean Spaces.<n>This work opens up avenues for utilizing non-Euclidean Spaces in clustering algorithms.
arXiv Detail & Related papers (2024-09-14T04:54:31Z) - Fuzzy K-Means Clustering without Cluster Centroids [21.256564324236333]
Fuzzy K-Means clustering is a critical technique in unsupervised data analysis.
This paper proposes a novel Fuzzy textitK-Means clustering algorithm that entirely eliminates the reliance on cluster centroids.
arXiv Detail & Related papers (2024-04-07T12:25:03Z) - Dirichlet Process-based Robust Clustering using the Median-of-Means Estimator [16.774378814288806]
We propose an efficient and automatic clustering technique by integrating the strengths of model-based and centroid-based methodologies.<n>Our method mitigates the effect of noise on the quality of clustering; while at the same time, estimates the number of clusters.
arXiv Detail & Related papers (2023-11-26T19:01:15Z) - Revisiting Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [69.15976031704687]
We propose IAC (Instance-Adaptive Clustering), the first algorithm whose performance matches the instance-specific lower bounds both in expectation and with high probability.<n>IAC maintains an overall computational complexity of $ mathcalO(n, textpolylog(n) $, making it scalable and practical for large-scale problems.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - Hybrid Fuzzy-Crisp Clustering Algorithm: Theory and Experiments [0.0]
We propose a hybrid fuzzy-crisp clustering algorithm based on a target function combining linear and quadratic terms of the membership function.
In this algorithm, the membership of a data point to a cluster is automatically set to exactly zero if the data point is sufficiently'' far from the cluster center.
The proposed algorithm is demonstrated to outperform the conventional methods on imbalanced datasets and can be competitive on more balanced datasets.
arXiv Detail & Related papers (2023-03-25T05:27:26Z) - Research on Efficient Fuzzy Clustering Method Based on Local Fuzzy
Granular balls [67.33923111887933]
In this paper, the data is fuzzy iterated using granular-balls, and the membership degree of data only considers the two granular-balls where it is located.
The formed fuzzy granular-balls set can use more processing methods in the face of different data scenarios.
arXiv Detail & Related papers (2023-03-07T01:52:55Z) - Local Sample-weighted Multiple Kernel Clustering with Consensus
Discriminative Graph [73.68184322526338]
Multiple kernel clustering (MKC) is committed to achieving optimal information fusion from a set of base kernels.
This paper proposes a novel local sample-weighted multiple kernel clustering model.
Experimental results demonstrate that our LSWMKC possesses better local manifold representation and outperforms existing kernel or graph-based clustering algo-rithms.
arXiv Detail & Related papers (2022-07-05T05:00:38Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Learnable Subspace Clustering [76.23527400396151]
We develop a learnable subspace clustering paradigm to efficiently solve the large-scale subspace clustering problem.
The key idea is to learn a parametric function to partition the high-dimensional subspaces into their underlying low-dimensional subspaces.
To the best of our knowledge, this paper is the first work to efficiently cluster millions of data points among the subspace clustering methods.
arXiv Detail & Related papers (2020-04-09T12:53:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.