論文の概要: Adaptive and Robust DBSCAN with Multi-agent Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2505.04339v1
- Date: Wed, 07 May 2025 11:37:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-08 19:07:36.057651
- Title: Adaptive and Robust DBSCAN with Multi-agent Reinforcement Learning
- Title(参考訳): 多エージェント強化学習を用いた適応およびロバストDBSCAN
- Authors: Hao Peng, Xiang Huang, Shuo Sun, Ruitong Zhang, Philip S. Yu,
- Abstract要約: 本稿では,多エージェント強化学習クラスタフレームワーク,すなわちAR-DBSCANを用いた新しいAdaptive and Robust DBSCANを提案する。
我々は、AR-DBSCANが、NMIおよびARIメトリクスの最大144.1%と175.3%のクラスタリング精度を向上するだけでなく、支配的なパラメータを確実に見つけることができることを示した。
- 参考スコア(独自算出の注目度): 53.527506374566485
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: DBSCAN, a well-known density-based clustering algorithm, has gained widespread popularity and usage due to its effectiveness in identifying clusters of arbitrary shapes and handling noisy data. However, it encounters challenges in producing satisfactory cluster results when confronted with datasets of varying density scales, a common scenario in real-world applications. In this paper, we propose a novel Adaptive and Robust DBSCAN with Multi-agent Reinforcement Learning cluster framework, namely AR-DBSCAN. First, we model the initial dataset as a two-level encoding tree and categorize the data vertices into distinct density partitions according to the information uncertainty determined in the encoding tree. Each partition is then assigned to an agent to find the best clustering parameters without manual assistance. The allocation is density-adaptive, enabling AR-DBSCAN to effectively handle diverse density distributions within the dataset by utilizing distinct agents for different partitions. Second, a multi-agent deep reinforcement learning guided automatic parameter searching process is designed. The process of adjusting the parameter search direction by perceiving the clustering environment is modeled as a Markov decision process. Using a weakly-supervised reward training policy network, each agent adaptively learns the optimal clustering parameters by interacting with the clusters. Third, a recursive search mechanism adaptable to the data's scale is presented, enabling efficient and controlled exploration of large parameter spaces. Extensive experiments are conducted on nine artificial datasets and a real-world dataset. The results of offline and online tasks show that AR-DBSCAN not only improves clustering accuracy by up to 144.1% and 175.3% in the NMI and ARI metrics, respectively, but also is capable of robustly finding dominant parameters.
- Abstract(参考訳): 密度に基づくクラスタリングアルゴリズムとしてよく知られたDBSCANは、任意の形状のクラスタを識別し、ノイズの多いデータを扱い、広く普及している。
しかし、実世界のアプリケーションでは一般的なシナリオである、様々な密度スケールのデータセットに直面すると、満足のいくクラスタ結果を生成するという課題に直面します。
本稿では,多エージェント強化学習クラスタフレームワーク,すなわちAR-DBSCANを用いたAdaptive and Robust DBSCANを提案する。
まず、初期データセットを2段階の符号化木としてモデル化し、符号化木で決定された情報の不確実性に応じて、データ頂点を異なる密度分割に分類する。
各パーティションはエージェントに割り当てられ、手動のアシストなしで最適なクラスタリングパラメータを見つける。
このアロケーションは密度適応型であり、AR-DBSCANは異なるパーティションに対して異なるエージェントを利用することで、データセット内の多様な密度分布を効果的に処理できる。
第2に、多エージェント深部強化学習誘導自動パラメータ探索法を設計する。
クラスタリング環境を知覚してパラメータ探索方向を調整する工程をマルコフ決定プロセスとしてモデル化する。
弱教師付き報酬トレーニングポリシネットワークを用いて,各エージェントは,クラスタとのインタラクションによって最適なクラスタリングパラメータを適応的に学習する。
第三に、データスケールに適応可能な再帰探索機構を示し、大きなパラメータ空間の効率的かつ制御された探索を可能にする。
大規模な実験は、9つの人工データセットと1つの実世界のデータセットで実施される。
オフラインタスクとオンラインタスクの結果、AR-DBSCAN は NMI と ARI のメトリクスでそれぞれ 144.1% と 175.3% のクラスタリング精度を向上するだけでなく、支配的なパラメータを確実に見つけることができる。
関連論文リスト
- AdaptiveMDL-GenClust: A Robust Clustering Framework Integrating Normalized Mutual Information and Evolutionary Algorithms [0.0]
我々は,最小記述長(MDL)原理と遺伝的最適化アルゴリズムを組み合わせたロバストクラスタリングフレームワークを提案する。
このフレームワークは、初期クラスタリングソリューションを生成するためのアンサンブルクラスタリングアプローチから始まり、MDL誘導評価関数を使用して洗練され、遺伝的アルゴリズムによって最適化される。
実験の結果,従来のクラスタリング手法を一貫して上回り,精度の向上,安定性の向上,バイアス低減を実現している。
論文 参考訳(メタデータ) (2024-11-26T20:26:14Z) - Large-scale Fully-Unsupervised Re-Identification [78.47108158030213]
大規模未ラベルデータから学ぶための2つの戦略を提案する。
第1の戦略は、近傍関係に違反することなく、それぞれのデータセットサイズを減らすために、局所的な近傍サンプリングを行う。
第2の戦略は、低時間上限の複雑さを持ち、メモリの複雑さを O(n2) から O(kn) に k n で還元する新しい再帰的手法を利用する。
論文 参考訳(メタデータ) (2023-07-26T16:19:19Z) - Hard Regularization to Prevent Deep Online Clustering Collapse without
Data Augmentation [65.268245109828]
オンラインディープクラスタリング(オンラインディープクラスタリング)とは、機能抽出ネットワークとクラスタリングモデルを組み合わせて、クラスタラベルを処理された各新しいデータポイントまたはバッチに割り当てることである。
オフラインメソッドよりも高速で汎用性が高いが、オンラインクラスタリングは、エンコーダがすべての入力を同じポイントにマッピングし、すべてを単一のクラスタに配置する、崩壊したソリューションに容易に到達することができる。
本稿では,データ拡張を必要としない手法を提案する。
論文 参考訳(メタデータ) (2023-03-29T08:23:26Z) - Automating DBSCAN via Deep Reinforcement Learning [73.82740568765279]
本稿では,DBSCANの自動パラメータ検索フレームワークであるDRL-DBSCANを提案する。
このフレームワークは、クラスタリング環境をマルコフ決定プロセスとして知覚することで、パラメータ探索方向を調整する過程をモデル化する。
このフレームワークはDBSCANクラスタリングの精度を最大で26%、25%改善している。
論文 参考訳(メタデータ) (2022-08-09T04:40:11Z) - DRBM-ClustNet: A Deep Restricted Boltzmann-Kohonen Architecture for Data
Clustering [0.0]
DRBM-ClustNetと呼ばれるデータクラスタリングのためのベイジアンDeep Restricted Boltzmann-Kohonenアーキテクチャを提案する。
ラベルなしデータの処理は、非線形分離可能なデータセットの効率的なクラスタリングのために、3段階に分けて行われる。
このフレームワークはクラスタリングの精度に基づいて評価され、他の最先端クラスタリング手法と比較してランク付けされる。
論文 参考訳(メタデータ) (2022-05-13T15:12:18Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - Index $t$-SNE: Tracking Dynamics of High-Dimensional Datasets with
Coherent Embeddings [1.7188280334580195]
本稿では,クラスタの位置を保存した新しいものを作成するために,埋め込みを再利用する手法を提案する。
提案アルゴリズムは,新しい項目を埋め込むために$t$-SNEと同じ複雑さを持つ。
論文 参考訳(メタデータ) (2021-09-22T06:45:37Z) - Variational Auto Encoder Gradient Clustering [0.0]
近年,ディープニューラルネットワークモデルを用いたクラスタリングが広く研究されている。
本稿では、より良いクラスタリングを実現するために確率関数勾配上昇を使用してデータを処理する方法を検討する。
DBSCANクラスタリングアルゴリズムに基づいて,データに適したクラスタ数を調べるための簡便かつ効果的な方法を提案する。
論文 参考訳(メタデータ) (2021-05-11T08:00:36Z) - Stable and consistent density-based clustering via multiparameter
persistence [77.34726150561087]
トポロジカルデータ解析による次数-リップス構成について考察する。
我々は,入力データの摂動に対する安定性を,通信間距離を用いて解析する。
私たちはこれらのメソッドを、Persistableと呼ばれる密度ベースのクラスタリングのためのパイプラインに統合します。
論文 参考訳(メタデータ) (2020-05-18T19:45:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。