論文の概要: Deep Learning Innovations for Energy Efficiency: Advances in Non-Intrusive Load Monitoring and EV Charging Optimization for a Sustainable Grid
- arxiv url: http://arxiv.org/abs/2505.04367v1
- Date: Wed, 07 May 2025 12:36:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-08 19:07:36.069939
- Title: Deep Learning Innovations for Energy Efficiency: Advances in Non-Intrusive Load Monitoring and EV Charging Optimization for a Sustainable Grid
- Title(参考訳): エネルギー効率のためのディープラーニング技術:持続可能グリッドの非侵入負荷モニタリングとEV充電最適化の進歩
- Authors: Stavros Sykiotis,
- Abstract要約: 気候変動を緩和し、温室効果ガスの排出を減らし、持続可能なエネルギー供給を確保するため、世界エネルギーの展望は大きな変化を遂げている。
再生可能エネルギーへの新たな投資と、高CO2排出エネルギー源の段階は、エネルギー移行のペースを妨げている。
この論文は、これらの2つの重要なエネルギー領域の制限を解決するツールを作成するための新しいDeep Learning技術の開発を調査する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The global energy landscape is undergoing a profound transformation, often referred to as the energy transition, driven by the urgent need to mitigate climate change, reduce greenhouse gas emissions, and ensure sustainable energy supplies. However, the undoubted complexity of new investments in renewables, as well as the phase out of high CO2-emission energy sources, hampers the pace of the energy transition and raises doubts as to whether new renewable energy sources are capable of solely meeting the climate target goals. This highlights the need to investigate alternative pathways to accelerate the energy transition, by identifying human activity domains with higher/excessive energy demands. Two notable examples where there is room for improvement, in the sense of reducing energy consumption and consequently CO2 emissions, are residential energy consumption and road transport. This dissertation investigates the development of novel Deep Learning techniques to create tools which solve limitations in these two key energy domains. Reduction of residential energy consumption can be achieved by empowering end-users with the user of Non-Intrusive Load Monitoring, whereas optimization of EV charging with Deep Reinforcement Learning can tackle road transport decarbonization.
- Abstract(参考訳): 気候変動を緩和し、温室効果ガスの排出を減らし、持続可能なエネルギー供給を確保するために緊急に必要となる。
しかし、再生可能エネルギーへの新たな投資の複雑さと高いCO2排出エネルギー源の段階がエネルギー移行のペースを妨げ、新しい再生可能エネルギー源が単に気候目標を達成することができるかどうかに疑問を呈する。
このことは、エネルギー移動を加速させる代替経路を研究する必要性を強調しており、高いエネルギー要求と過剰なエネルギー要求を持つ人間の活動領域を特定することである。
エネルギー消費の削減やCO2排出量の削減といった改善の余地がある2つの顕著な例は、住宅エネルギー消費と道路輸送である。
この論文は、これらの2つの重要なエネルギー領域の制限を解決するツールを作成するための新しいDeep Learning技術の開発を調査する。
非侵入負荷モニタリングのユーザによるエンドユーザーによる電力消費の削減が実現される一方、Deep Reinforcement LearningによるEV充電の最適化は、道路輸送の脱炭に対処することができる。
関連論文リスト
- AI-Driven approach for sustainable extraction of earth's subsurface renewable energy while minimizing seismic activity [44.99833362998488]
地球の地殻に流体を注入すると、地震を誘発または引き起こすことがある。
本研究では,人間による震度制御のための強化学習に基づく新しい手法を提案する。
本研究では,強化学習アルゴリズムが頑健な制御器と効率的に対話可能であることを示す。
論文 参考訳(メタデータ) (2024-08-07T10:06:04Z) - EnergAIze: Multi Agent Deep Deterministic Policy Gradient for Vehicle to Grid Energy Management [0.0]
本稿では,MARL(Multi-Agent Reinforcement Learning)エネルギー管理フレームワークであるEnergAIzeを紹介する。
ユーザ中心の多目的エネルギー管理を可能にし、各プローサが様々な個人管理目標から選択できるようにする。
EnergAIzeの有効性は、CityLearnシミュレーションフレームワークを用いたケーススタディにより評価された。
論文 参考訳(メタデータ) (2024-04-02T23:16:17Z) - A Review on AI Algorithms for Energy Management in E-Mobility Services [4.084938013041068]
エモービリティ(E-mobility、電気モビリティ)は、環境や持続可能性の懸念に対処するための重要なソリューションとして登場した。
本稿では,e-mobilityシステムにおける効率的なエネルギー管理に関する様々な課題に,人工知能(AI)が取り組む可能性を探究する。
論文 参考訳(メタデータ) (2023-09-26T16:34:35Z) - Battery and Hydrogen Energy Storage Control in a Smart Energy Network
with Flexible Energy Demand using Deep Reinforcement Learning [2.5666730153464465]
電池と水素の蓄電池を組み合わせたハイブリッド型蓄電池システムを提案する。
本稿では,ハイブリッドエネルギー貯蔵システムのスケジューリングとエネルギー需要をリアルタイムに最適化する,深層強化学習に基づく制御手法を提案する。
論文 参考訳(メタデータ) (2022-08-26T16:47:48Z) - Eco2AI: carbon emissions tracking of machine learning models as the
first step towards sustainable AI [47.130004596434816]
eco2AIでは、エネルギー消費の追跡と地域CO2排出量の正当性に重点を置いている。
モチベーションは、サステナブルAIとグリーンAI経路の両方で、AIベースの温室効果ガスの隔離サイクルの概念からもたらされる。
論文 参考訳(メタデータ) (2022-07-31T09:34:53Z) - Sustainability using Renewable Electricity (SuRE) towards NetZero
Emissions [0.0]
エネルギー需要の増加は環境に深刻な脅威をもたらす。
ほとんどのエネルギー源は再生不可能であり、化石燃料をベースとしており、有害な温室効果ガスの排出につながる。
我々は、組織が全エネルギー消費において、全体の再生可能電力シェアを増やすために使用できるスケーラブルなAIベースのソリューションを提案する。
論文 参考訳(メタデータ) (2022-02-26T10:04:26Z) - Modelling the transition to a low-carbon energy supply [91.3755431537592]
気候変動の影響を制限するため、低炭素電力供給への移行が不可欠である。
二酸化炭素排出量の削減は、世界がピーク点に達するのを防ぐのに役立ちます。
排気ガスの排出は、世界中の気象条件の極端に繋がる可能性がある。
論文 参考訳(メタデータ) (2021-09-25T12:37:05Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
マイクログリッドを用いたMECネットワークにおけるリスク対応エネルギースケジューリング問題について検討する。
ニューラルネットワークを用いたマルチエージェントディープ強化学習(MADRL)に基づくアドバンテージアクター・クリティック(A3C)アルゴリズムを適用し,その解を導出する。
論文 参考訳(メタデータ) (2020-02-21T02:14:38Z) - Towards the Systematic Reporting of the Energy and Carbon Footprints of
Machine Learning [68.37641996188133]
我々は、リアルタイムエネルギー消費と二酸化炭素排出量を追跡するための枠組みを導入する。
エネルギー効率のよい強化学習アルゴリズムのためのリーダーボードを作成します。
炭素排出量削減とエネルギー消費削減のための戦略を提案する。
論文 参考訳(メタデータ) (2020-01-31T05:12:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。