Deep Learning Innovations for Energy Efficiency: Advances in Non-Intrusive Load Monitoring and EV Charging Optimization for a Sustainable Grid
- URL: http://arxiv.org/abs/2505.04367v1
- Date: Wed, 07 May 2025 12:36:19 GMT
- Title: Deep Learning Innovations for Energy Efficiency: Advances in Non-Intrusive Load Monitoring and EV Charging Optimization for a Sustainable Grid
- Authors: Stavros Sykiotis,
- Abstract summary: The global energy landscape is undergoing a profound transformation, driven by the urgent need to mitigate climate change, reduce greenhouse gas emissions, and ensure sustainable energy supplies.<n>New investments in renewables, as well as the phase out of high CO2-emission energy sources, hampers the pace of the energy transition.<n>This dissertation investigates the development of novel Deep Learning techniques to create tools which solve limitations in these two key energy domains.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The global energy landscape is undergoing a profound transformation, often referred to as the energy transition, driven by the urgent need to mitigate climate change, reduce greenhouse gas emissions, and ensure sustainable energy supplies. However, the undoubted complexity of new investments in renewables, as well as the phase out of high CO2-emission energy sources, hampers the pace of the energy transition and raises doubts as to whether new renewable energy sources are capable of solely meeting the climate target goals. This highlights the need to investigate alternative pathways to accelerate the energy transition, by identifying human activity domains with higher/excessive energy demands. Two notable examples where there is room for improvement, in the sense of reducing energy consumption and consequently CO2 emissions, are residential energy consumption and road transport. This dissertation investigates the development of novel Deep Learning techniques to create tools which solve limitations in these two key energy domains. Reduction of residential energy consumption can be achieved by empowering end-users with the user of Non-Intrusive Load Monitoring, whereas optimization of EV charging with Deep Reinforcement Learning can tackle road transport decarbonization.
Related papers
- The Energy Loss Phenomenon in RLHF: A New Perspective on Mitigating Reward Hacking [72.45765726160151]
This work identifies the Energy Loss Phenomenon in Reinforcement Learning from Human Feedback and its connection to reward hacking.<n>We propose an Energy loss-aware PPO algorithm (EPPO) which penalizes the increase in energy loss in the final layer during reward calculation to prevent excessive energy loss.
arXiv Detail & Related papers (2025-01-31T18:10:53Z) - AI-Driven approach for sustainable extraction of earth's subsurface renewable energy while minimizing seismic activity [44.99833362998488]
Injection of fluids into the Earth's crust can induce or trigger earthquakes.
We propose a new approach based on Reinforcement Learning for the control of human-induced seismicity.
We show that the reinforcement learning algorithm can interact efficiently with a robust controller.
arXiv Detail & Related papers (2024-08-07T10:06:04Z) - A Memetic NSGA-III for Green Flexible Production with Real-Time Energy Costs & Emissions [0.0]
This study focuses on industries that adapt production to real-time energy markets, offering flexible consumption to the grid.<n>We present a novel memetic NSGA-III to minimize makespan, energy cost, and emissions, integrating real energy market data.
arXiv Detail & Related papers (2024-05-23T09:11:21Z) - EnergAIze: Multi Agent Deep Deterministic Policy Gradient for Vehicle to Grid Energy Management [0.0]
This paper introduces EnergAIze, a Multi-Agent Reinforcement Learning (MARL) energy management framework.
It enables user-centric and multi-objective energy management by allowing each prosumer to select from a range of personal management objectives.
The efficacy of EnergAIze was evaluated through case studies employing the CityLearn simulation framework.
arXiv Detail & Related papers (2024-04-02T23:16:17Z) - A Review on AI Algorithms for Energy Management in E-Mobility Services [4.084938013041068]
E-mobility, or electric mobility, has emerged as a pivotal solution to address pressing environmental and sustainability concerns.
This paper seeks to explore the potential of artificial intelligence (AI) in addressing various challenges related to effective energy management in e-mobility systems.
arXiv Detail & Related papers (2023-09-26T16:34:35Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems.
In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users.
arXiv Detail & Related papers (2022-11-29T01:18:58Z) - Battery and Hydrogen Energy Storage Control in a Smart Energy Network
with Flexible Energy Demand using Deep Reinforcement Learning [2.5666730153464465]
We introduce a hybrid energy storage system composed of battery and hydrogen energy storage.
We propose a deep reinforcement learning-based control strategy to optimise the scheduling of the hybrid energy storage system and energy demand in real-time.
arXiv Detail & Related papers (2022-08-26T16:47:48Z) - Eco2AI: carbon emissions tracking of machine learning models as the
first step towards sustainable AI [47.130004596434816]
In eco2AI we put emphasis on accuracy of energy consumption tracking and correct regional CO2 emissions accounting.
The motivation also comes from the concept of AI-based green house gases sequestrating cycle with both Sustainable AI and Green AI pathways.
arXiv Detail & Related papers (2022-07-31T09:34:53Z) - Sustainability using Renewable Electricity (SuRE) towards NetZero
Emissions [0.0]
Growth in energy demand poses serious threat to the environment.
Most of the energy sources are non-renewable and based on fossil fuels, which leads to emission of harmful greenhouse gases.
We present a scalable AI based solution that can be used by organizations to increase their overall renewable electricity share in total energy consumption.
arXiv Detail & Related papers (2022-02-26T10:04:26Z) - Modelling the transition to a low-carbon energy supply [91.3755431537592]
A transition to a low-carbon electricity supply is crucial to limit the impacts of climate change.
Reducing carbon emissions could help prevent the world from reaching a tipping point, where runaway emissions are likely.
Runaway emissions could lead to extremes in weather conditions around the world.
arXiv Detail & Related papers (2021-09-25T12:37:05Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z) - Towards the Systematic Reporting of the Energy and Carbon Footprints of
Machine Learning [68.37641996188133]
We introduce a framework for tracking realtime energy consumption and carbon emissions.
We create a leaderboard for energy efficient reinforcement learning algorithms.
We propose strategies for mitigation of carbon emissions and reduction of energy consumption.
arXiv Detail & Related papers (2020-01-31T05:12:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.