A Review on AI Algorithms for Energy Management in E-Mobility Services
- URL: http://arxiv.org/abs/2309.15140v1
- Date: Tue, 26 Sep 2023 16:34:35 GMT
- Title: A Review on AI Algorithms for Energy Management in E-Mobility Services
- Authors: Sen Yan, Maqsood Hussain Shah, Ji Li, Noel O'Connor and Mingming Liu
- Abstract summary: E-mobility, or electric mobility, has emerged as a pivotal solution to address pressing environmental and sustainability concerns.
This paper seeks to explore the potential of artificial intelligence (AI) in addressing various challenges related to effective energy management in e-mobility systems.
- Score: 4.084938013041068
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: E-mobility, or electric mobility, has emerged as a pivotal solution to
address pressing environmental and sustainability concerns in the
transportation sector. The depletion of fossil fuels, escalating greenhouse gas
emissions, and the imperative to combat climate change underscore the
significance of transitioning to electric vehicles (EVs). This paper seeks to
explore the potential of artificial intelligence (AI) in addressing various
challenges related to effective energy management in e-mobility systems (EMS).
These challenges encompass critical factors such as range anxiety, charge rate
optimization, and the longevity of energy storage in EVs. By analyzing existing
literature, we delve into the role that AI can play in tackling these
challenges and enabling efficient energy management in EMS. Our objectives are
twofold: to provide an overview of the current state-of-the-art in this
research domain and propose effective avenues for future investigations.
Through this analysis, we aim to contribute to the advancement of sustainable
and efficient e-mobility solutions, shaping a greener and more sustainable
future for transportation.
Related papers
- The RoboDrive Challenge: Drive Anytime Anywhere in Any Condition [136.32656319458158]
The 2024 RoboDrive Challenge was crafted to propel the development of driving perception technologies.
This year's challenge consisted of five distinct tracks and attracted 140 registered teams from 93 institutes across 11 countries.
The competition culminated in 15 top-performing solutions.
arXiv Detail & Related papers (2024-05-14T17:59:57Z) - EnergAIze: Multi Agent Deep Deterministic Policy Gradient for Vehicle to Grid Energy Management [0.0]
This paper introduces EnergAIze, a Multi-Agent Reinforcement Learning (MARL) energy management framework.
It enables user-centric and multi-objective energy management by allowing each prosumer to select from a range of personal management objectives.
The efficacy of EnergAIze was evaluated through case studies employing the CityLearn simulation framework.
arXiv Detail & Related papers (2024-04-02T23:16:17Z) - The Role of Intelligent Transportation Systems and Artificial
Intelligence in Energy Efficiency and Emission Reduction [4.847470451539329]
We explore the role of intelligent transportation systems (ITSs) and artificial intelligence (AI) in future enhanced energy and emission reduction (EER)
More specifically, we discuss the impact of sensors at different levels of ITS on improving EER.
We also investigate the potential networking connections in ITSs and provide an illustration of how they improve EER.
arXiv Detail & Related papers (2024-01-25T23:07:32Z) - HAZARD Challenge: Embodied Decision Making in Dynamically Changing
Environments [93.94020724735199]
HAZARD consists of three unexpected disaster scenarios, including fire, flood, and wind.
This benchmark enables us to evaluate autonomous agents' decision-making capabilities across various pipelines.
arXiv Detail & Related papers (2024-01-23T18:59:43Z) - Strategizing EV Charging and Renewable Integration in Texas [2.429429123532487]
This study explores the convergence of electric vehicles (EVs), renewable energy, and smart grid technologies in the context of Texas.
Research focuses on grid stability concerns, uncoordinated charging patterns, and the complicated relationship between EVs and renewable energy sources.
arXiv Detail & Related papers (2023-10-25T23:34:25Z) - Recent Progress in Energy Management of Connected Hybrid Electric
Vehicles Using Reinforcement Learning [6.851787321368938]
The shift towards electrifying transportation aims to curb environmental concerns related to fossil fuel consumption.
The evolution of energy management systems (EMS) from HEVs to connected hybrid electric vehicles (CHEVs) represent a pivotal shift.
This review bridges the gap, highlighting challenges, advancements, and potential contributions of RL-based solutions for future sustainable transportation systems.
arXiv Detail & Related papers (2023-08-28T14:12:52Z) - AI-based Predictive Analytic Approaches for safeguarding the Future of
Electric/Hybrid Vehicles [0.0]
Electric and hybrid vehicles (EHVs) may help meet the need for ecologically friendly transportation.
AI may improve EHV energy efficiency, emissions reduction, and sustainability.
Remote hijacking, security breaches, and unauthorized access are cybersecurity vulnerabilities addressed.
arXiv Detail & Related papers (2023-04-26T22:02:11Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
arXiv Detail & Related papers (2022-06-28T17:08:31Z) - Learning, Computing, and Trustworthiness in Intelligent IoT
Environments: Performance-Energy Tradeoffs [62.91362897985057]
An Intelligent IoT Environment (iIoTe) is comprised of heterogeneous devices that can collaboratively execute semi-autonomous IoT applications.
This paper provides a state-of-the-art overview of these technologies and illustrates their functionality and performance, with special attention to the tradeoff among resources, latency, privacy and energy consumption.
arXiv Detail & Related papers (2021-10-04T19:41:42Z) - Modelling the transition to a low-carbon energy supply [91.3755431537592]
A transition to a low-carbon electricity supply is crucial to limit the impacts of climate change.
Reducing carbon emissions could help prevent the world from reaching a tipping point, where runaway emissions are likely.
Runaway emissions could lead to extremes in weather conditions around the world.
arXiv Detail & Related papers (2021-09-25T12:37:05Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.