YABLoCo: Yet Another Benchmark for Long Context Code Generation
- URL: http://arxiv.org/abs/2505.04406v1
- Date: Wed, 07 May 2025 13:42:23 GMT
- Title: YABLoCo: Yet Another Benchmark for Long Context Code Generation
- Authors: Aidar Valeev, Roman Garaev, Vadim Lomshakov, Irina Piontkovskaya, Vladimir Ivanov, Israel Adewuyi,
- Abstract summary: This paper contributes to the long context code generation benchmark (YABLoCo)<n>The benchmark features a test set of 215 functions selected from four large repositories with thousands of functions.<n>The benchmark contains large repositories from 200K to 2,000K LoC.
- Score: 3.1497421627133297
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models demonstrate the ability to solve various programming tasks, including code generation. Typically, the performance of LLMs is measured on benchmarks with small or medium-sized context windows of thousands of lines of code. At the same time, in real-world software projects, repositories can span up to millions of LoC. This paper closes this gap by contributing to the long context code generation benchmark (YABLoCo). The benchmark featured a test set of 215 functions selected from four large repositories with thousands of functions. The dataset contained metadata of functions, contexts of the functions with different levels of dependencies, docstrings, functions bodies, and call graphs for each repository. This paper presents three key aspects of the contribution. First, the benchmark aims at function body generation in large repositories in C and C++, two languages not covered by previous benchmarks. Second, the benchmark contains large repositories from 200K to 2,000K LoC. Third, we contribute a scalable evaluation pipeline for efficient computing of the target metrics and a tool for visual analysis of generated code. Overall, these three aspects allow for evaluating code generation in large repositories in C and C++.
Related papers
- Paper2Code: Automating Code Generation from Scientific Papers in Machine Learning [57.09163579304332]
We introduce PaperCoder, a framework that transforms machine learning papers into functional code repositories.<n>PaperCoder operates in three stages: planning, designs the system architecture with diagrams, identifies file dependencies, and generates configuration files.<n>We then evaluate PaperCoder on generating code implementations from machine learning papers based on both model-based and human evaluations.
arXiv Detail & Related papers (2025-04-24T01:57:01Z) - CLOVER: A Test Case Generation Benchmark with Coverage, Long-Context, and Verification [71.34070740261072]
This paper presents a benchmark, CLOVER, to evaluate models' capabilities in generating and completing test cases.<n>The benchmark is containerized for code execution across tasks, and we will release the code, data, and construction methodologies.
arXiv Detail & Related papers (2025-02-12T21:42:56Z) - CodeRepoQA: A Large-scale Benchmark for Software Engineering Question Answering [11.087034068992653]
We introduce CodeRepoQA, a large-scale benchmark for evaluating repository-level question-answering capabilities in software engineering.<n>CodeRepoQA encompasses five programming languages and covers a wide range of scenarios, enabling comprehensive evaluation of language models.<n>In total, CodeRepoQA is a multi-turn question-answering benchmark with 585,687 entries, covering a diverse array of software engineering scenarios.
arXiv Detail & Related papers (2024-12-19T11:48:01Z) - ExecRepoBench: Multi-level Executable Code Completion Evaluation [45.963424627710765]
We introduce a novel framework for enhancing code completion in software development through the creation of a repository-level benchmark ExecRepoBench.<n>We present a multi-level grammar-based completion methodology conditioned on the abstract syntax tree to mask code fragments at various logical units.<n>Then, we fine-tune the open-source LLM with 7B parameters on Repo-Instruct to produce a strong code completion baseline model Qwen2.5-Coder-Instruct-C.
arXiv Detail & Related papers (2024-12-16T17:14:35Z) - Can Language Models Replace Programmers for Coding? REPOCOD Says 'Not Yet' [9.48622608877252]
A number of repository-level code generation benchmarks have emerged to evaluate the capabilities of large language models (LLMs)<n>These benchmarks consist of short completions, synthetic examples, or focus on limited scale repositories, failing to represent real-world coding tasks.<n>We create REPOCOD, a Python code-generation benchmark containing complex tasks with realistic dependencies in real-world large projects.
arXiv Detail & Related papers (2024-10-29T01:21:05Z) - ComplexCodeEval: A Benchmark for Evaluating Large Code Models on More Complex Code [29.178248778212588]
ComplexCodeEval is a benchmark designed to assess large language models (LLMs) in various development tasks.
It includes 3,897 Java samples and 7,184 Python samples from high-star GitHub repositories.
arXiv Detail & Related papers (2024-09-16T13:43:04Z) - CodeRAG-Bench: Can Retrieval Augment Code Generation? [78.37076502395699]
We conduct a systematic, large-scale analysis of code generation using retrieval-augmented generation.<n>We first curate a comprehensive evaluation benchmark, CodeRAG-Bench, encompassing three categories of code generation tasks.<n>We examine top-performing models on CodeRAG-Bench by providing contexts retrieved from one or multiple sources.
arXiv Detail & Related papers (2024-06-20T16:59:52Z) - Long Code Arena: a Set of Benchmarks for Long-Context Code Models [75.70507534322336]
Long Code Arena is a suite of six benchmarks for code processing tasks that require project-wide context.
These tasks cover different aspects of code processing: library-based code generation, CI builds repair, project-level code completion, commit message generation, bug localization, and module summarization.
For each task, we provide a manually verified dataset for testing, an evaluation suite, and open-source baseline solutions.
arXiv Detail & Related papers (2024-06-17T14:58:29Z) - On the Impacts of Contexts on Repository-Level Code Generation [5.641402231731082]
We present RepoExec, a novel benchmark designed to evaluate repository-level code generation.<n>We focus on three key aspects: executability, functional correctness through comprehensive test case generation, and accurate utilization of cross-file contexts.
arXiv Detail & Related papers (2024-06-17T10:45:22Z) - VersiCode: Towards Version-controllable Code Generation [58.82709231906735]
Large Language Models (LLMs) have made tremendous strides in code generation, but existing research fails to account for the dynamic nature of software development.
We propose two novel tasks aimed at bridging this gap: version-specific code completion (VSCC) and version-aware code migration (VACM)
We conduct an extensive evaluation on VersiCode, which reveals that version-controllable code generation is indeed a significant challenge.
arXiv Detail & Related papers (2024-06-11T16:15:06Z) - ML-Bench: Evaluating Large Language Models and Agents for Machine Learning Tasks on Repository-Level Code [76.84199699772903]
ML-Bench is a benchmark rooted in real-world programming applications that leverage existing code repositories to perform tasks.
To evaluate both Large Language Models (LLMs) and AI agents, two setups are employed: ML-LLM-Bench for assessing LLMs' text-to-code conversion within a predefined deployment environment, and ML-Agent-Bench for testing autonomous agents in an end-to-end task execution within a Linux sandbox environment.
arXiv Detail & Related papers (2023-11-16T12:03:21Z) - RepoCoder: Repository-Level Code Completion Through Iterative Retrieval
and Generation [96.75695811963242]
RepoCoder is a framework to streamline the repository-level code completion process.
It incorporates a similarity-based retriever and a pre-trained code language model.
It consistently outperforms the vanilla retrieval-augmented code completion approach.
arXiv Detail & Related papers (2023-03-22T13:54:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.