LONGER: Scaling Up Long Sequence Modeling in Industrial Recommenders
- URL: http://arxiv.org/abs/2505.04421v2
- Date: Fri, 18 Jul 2025 13:29:47 GMT
- Title: LONGER: Scaling Up Long Sequence Modeling in Industrial Recommenders
- Authors: Zheng Chai, Qin Ren, Xijun Xiao, Huizhi Yang, Bo Han, Sijun Zhang, Di Chen, Hui Lu, Wenlin Zhao, Lele Yu, Xionghang Xie, Shiru Ren, Xiang Sun, Yaocheng Tan, Peng Xu, Yuchao Zheng, Di Wu,
- Abstract summary: Long-sequence optimized traNsformer for GPU-Efficient Recommenders.<n>Longer consistently outperforms strong baselines in offline metrics and online A/B testing.
- Score: 23.70714095931094
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling ultra-long user behavior sequences is critical for capturing both long- and short-term preferences in industrial recommender systems. Existing solutions typically rely on two-stage retrieval or indirect modeling paradigms, incuring upstream-downstream inconsistency and computational inefficiency. In this paper, we present LONGER, a Long-sequence Optimized traNsformer for GPU-Efficient Recommenders. LONGER incorporates (i) a global token mechanism for stabilizing attention over long contexts, (ii) a token merge module with lightweight InnerTransformers and hybrid attention strategy to reduce quadratic complexity, and (iii) a series of engineering optimizations, including training with mixed-precision and activation recomputation, KV cache serving, and the fully synchronous model training and serving framework for unified GPU-based dense and sparse parameter updates. LONGER consistently outperforms strong baselines in both offline metrics and online A/B testing in both advertising and e-commerce services at ByteDance, validating its consistent effectiveness and industrial-level scaling laws. Currently, LONGER has been fully deployed at more than 10 influential scenarios at ByteDance, serving billion users.
Related papers
- Beyond Fixed: Variable-Length Denoising for Diffusion Large Language Models [74.15250326312179]
Diffusion Large Language Models offer efficient parallel generation and capable global modeling.<n>The dominant application ofDLLMs is hindered by the need for a statically predefined generation length.<n>We introduce DAEDAL, a novel training-free denoising strategy that enables Dynamic Adaptive Length Expansion.
arXiv Detail & Related papers (2025-08-01T17:56:07Z) - Systolic Array-based Accelerator for Structured State-Space Models [1.137896937254823]
State-Space Models (SSMs) process very long data sequences more efficiently than recurrent and Transformer-based models.<n>In this paper, we introduce a specialized hardware accelerator, EpochCore, for accelerating SSMs.<n>EpochCore achieves on average 2000x improvement in performance on LRA datasets compared to a GPU.
arXiv Detail & Related papers (2025-07-29T00:01:57Z) - Adaptive Deadline and Batch Layered Synchronized Federated Learning [66.93447103966439]
Federated learning (FL) enables collaborative model training across distributed edge devices while preserving data privacy, and typically operates in a round-based synchronous manner.<n>We propose ADEL-FL, a novel framework that jointly optimize per-round deadlines and user-specific batch sizes for layer-wise aggregation.
arXiv Detail & Related papers (2025-05-29T19:59:18Z) - Pangu Embedded: An Efficient Dual-system LLM Reasoner with Metacognition [95.54406667705999]
Pangu Embedded is an efficient Large Language Model (LLM) reasoner developed on Ascend Neural Processing Units (NPUs)<n>It addresses the significant computational costs and inference latency challenges prevalent in existing reasoning-optimized LLMs.<n>It delivers rapid responses and state-of-the-art reasoning quality within a single, unified model architecture.
arXiv Detail & Related papers (2025-05-28T14:03:02Z) - syftr: Pareto-Optimal Generative AI [40.80352098169579]
syftr is a framework that performs efficient multi-objective search over a broad space of agentic and non-agentic RAG configurations.<n>Syftr finds flows which are on average approximately 9 times cheaper while preserving most of the accuracy of the most accurate flows.
arXiv Detail & Related papers (2025-05-26T17:43:13Z) - SpecRouter: Adaptive Routing for Multi-Level Speculative Decoding in Large Language Models [21.933379266533098]
Large Language Models (LLMs) present a critical trade-off between inference quality and computational cost.<n>Existing serving strategies often employ fixed model scales or static two-stage speculative decoding.<n>This paper introduces systemname, a novel framework that reimagines LLM inference as an adaptive routing problem.
arXiv Detail & Related papers (2025-05-12T15:46:28Z) - Optimizing LLM Inference: Fluid-Guided Online Scheduling with Memory Constraints [14.341123057506827]
Large Language Models (LLMs) are indispensable in today's applications, but their inference procedure demands significant computational resources.<n>This paper formulates LLM inference optimization as a multi-stage online scheduling problem.<n>We develop a fluid dynamics approximation to provide a tractable benchmark that guides algorithm design.
arXiv Detail & Related papers (2025-04-15T16:00:21Z) - Understanding and Optimizing Multi-Stage AI Inference Pipelines [11.254219071373319]
HERMES is a Heterogeneous Multi-stage LLM inference Execution Simulator.<n> HERMES supports heterogeneous clients executing multiple models concurrently unlike prior frameworks.<n>We explore the impact of reasoning stages on end-to-end latency, optimal strategies for hybrid pipelines, and the architectural implications of remote KV cache retrieval.
arXiv Detail & Related papers (2025-04-14T00:29:49Z) - An Efficient Large Recommendation Model: Towards a Resource-Optimal Scaling Law [2.688944054336062]
Climber is a resource-efficient recommendation framework.<n>It has been successfully deployed on Netease Cloud Music, one of China's largest music streaming platforms.
arXiv Detail & Related papers (2025-02-14T03:25:09Z) - Tackling the Dynamicity in a Production LLM Serving System with SOTA Optimizations via Hybrid Prefill/Decode/Verify Scheduling on Efficient Meta-kernels [12.77187564450236]
We introduce XY-Serve, a versatile, Ascend native, end-to-end production large language model (LLM) serving system.<n>The core idea is an abstraction mechanism that smooths out the workload variability by decomposing computations into fine-grained meta primitives.<n>For GEMM, we introduce a virtual padding scheme that adapts to dynamic shape changes while using highly efficient GEMM primitives with assorted fixed tile sizes.
arXiv Detail & Related papers (2024-12-24T02:27:44Z) - Sparser is Faster and Less is More: Efficient Sparse Attention for Long-Range Transformers [58.5711048151424]
We introduce SPARSEK Attention, a novel sparse attention mechanism designed to overcome computational and memory obstacles.
Our approach integrates a scoring network and a differentiable top-k mask operator, SPARSEK, to select a constant number of KV pairs for each query.
Experimental results reveal that SPARSEK Attention outperforms previous sparse attention methods.
arXiv Detail & Related papers (2024-06-24T15:55:59Z) - Efficient Parallel Split Learning over Resource-constrained Wireless
Edge Networks [44.37047471448793]
In this paper, we advocate the integration of edge computing paradigm and parallel split learning (PSL)
We propose an innovative PSL framework, namely, efficient parallel split learning (EPSL) to accelerate model training.
We show that the proposed EPSL framework significantly decreases the training latency needed to achieve a target accuracy.
arXiv Detail & Related papers (2023-03-26T16:09:48Z) - Unifying Synergies between Self-supervised Learning and Dynamic
Computation [53.66628188936682]
We present a novel perspective on the interplay between SSL and DC paradigms.
We show that it is feasible to simultaneously learn a dense and gated sub-network from scratch in a SSL setting.
The co-evolution during pre-training of both dense and gated encoder offers a good accuracy-efficiency trade-off.
arXiv Detail & Related papers (2023-01-22T17:12:58Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.