A Two-Timescale Primal-Dual Framework for Reinforcement Learning via Online Dual Variable Guidance
- URL: http://arxiv.org/abs/2505.04494v1
- Date: Wed, 07 May 2025 15:18:43 GMT
- Title: A Two-Timescale Primal-Dual Framework for Reinforcement Learning via Online Dual Variable Guidance
- Authors: Axel Friedrich Wolter, Tobias Sutter,
- Abstract summary: We propose PGDA-RL, a primal-dual Projected Gradient Descent-Ascent algorithm for solving regularized Markov Decision Processes (MDPs)<n>PGDA-RL integrates experience replay-based gradient estimation with a two-timescale decomposition of the underlying nested optimization problem.<n>We prove that PGDA-RL converges almost surely to the optimal value function and policy of the regularized MDP.
- Score: 3.4354636842203026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study reinforcement learning by combining recent advances in regularized linear programming formulations with the classical theory of stochastic approximation. Motivated by the challenge of designing algorithms that leverage off-policy data while maintaining on-policy exploration, we propose PGDA-RL, a novel primal-dual Projected Gradient Descent-Ascent algorithm for solving regularized Markov Decision Processes (MDPs). PGDA-RL integrates experience replay-based gradient estimation with a two-timescale decomposition of the underlying nested optimization problem. The algorithm operates asynchronously, interacts with the environment through a single trajectory of correlated data, and updates its policy online in response to the dual variable associated with the occupation measure of the underlying MDP. We prove that PGDA-RL converges almost surely to the optimal value function and policy of the regularized MDP. Our convergence analysis relies on tools from stochastic approximation theory and holds under weaker assumptions than those required by existing primal-dual RL approaches, notably removing the need for a simulator or a fixed behavioral policy.
Related papers
- Robust Offline Reinforcement Learning with Linearly Structured $f$-Divergence Regularization [10.465789490644031]
We propose a novel framework for robust regularized Markov decision process ($d$-RRMDP)<n>For the offline RL setting, we develop a family of algorithms, Robust Regularized Pessimistic Value Iteration (R2PVI)
arXiv Detail & Related papers (2024-11-27T18:57:03Z) - Deterministic Policy Gradient Primal-Dual Methods for Continuous-Space Constrained MDPs [82.34567890576423]
We develop a deterministic policy gradient primal-dual method to find an optimal deterministic policy with non-asymptotic convergence.<n>We prove that the primal-dual iterates of D-PGPD converge at a sub-linear rate to an optimal regularized primal-dual pair.<n>This appears to be the first work that proposes a deterministic policy search method for continuous-space constrained MDPs.
arXiv Detail & Related papers (2024-08-19T14:11:04Z) - Learning Reward and Policy Jointly from Demonstration and Preference Improves Alignment [58.049113055986375]
We develop a single stage approach named Alignment with Integrated Human Feedback (AIHF) to train reward models and the policy.<n>The proposed approach admits a suite of efficient algorithms, which can easily reduce to, and leverage, popular alignment algorithms.<n>We demonstrate the efficiency of the proposed solutions with extensive experiments involving alignment problems in LLMs and robotic control problems in MuJoCo.
arXiv Detail & Related papers (2024-06-11T01:20:53Z) - Statistically Efficient Variance Reduction with Double Policy Estimation
for Off-Policy Evaluation in Sequence-Modeled Reinforcement Learning [53.97273491846883]
We propose DPE: an RL algorithm that blends offline sequence modeling and offline reinforcement learning with Double Policy Estimation.
We validate our method in multiple tasks of OpenAI Gym with D4RL benchmarks.
arXiv Detail & Related papers (2023-08-28T20:46:07Z) - PARL: A Unified Framework for Policy Alignment in Reinforcement Learning from Human Feedback [106.63518036538163]
We present a novel unified bilevel optimization-based framework, textsfPARL, formulated to address the recently highlighted critical issue of policy alignment in reinforcement learning.
Our framework addressed these concerns by explicitly parameterizing the distribution of the upper alignment objective (reward design) by the lower optimal variable.
Our empirical results substantiate that the proposed textsfPARL can address the alignment concerns in RL by showing significant improvements.
arXiv Detail & Related papers (2023-08-03T18:03:44Z) - Offline Policy Optimization in RL with Variance Regularizaton [142.87345258222942]
We propose variance regularization for offline RL algorithms, using stationary distribution corrections.
We show that by using Fenchel duality, we can avoid double sampling issues for computing the gradient of the variance regularizer.
The proposed algorithm for offline variance regularization (OVAR) can be used to augment any existing offline policy optimization algorithms.
arXiv Detail & Related papers (2022-12-29T18:25:01Z) - GEC: A Unified Framework for Interactive Decision Making in MDP, POMDP,
and Beyond [101.5329678997916]
We study sample efficient reinforcement learning (RL) under the general framework of interactive decision making.
We propose a novel complexity measure, generalized eluder coefficient (GEC), which characterizes the fundamental tradeoff between exploration and exploitation.
We show that RL problems with low GEC form a remarkably rich class, which subsumes low Bellman eluder dimension problems, bilinear class, low witness rank problems, PO-bilinear class, and generalized regular PSR.
arXiv Detail & Related papers (2022-11-03T16:42:40Z) - A Subgame Perfect Equilibrium Reinforcement Learning Approach to
Time-inconsistent Problems [4.314956204483074]
We establish a subgame perfect equilibrium reinforcement learning framework for time-inconsistent (TIC) problems.
We propose a new class of algorithms, called backward policy iteration (BPI), that solves SPERL and addresses both challenges.
To demonstrate the practical usage of BPI as a training framework, we adapt standard RL simulation methods and derive two BPI-based training algorithms.
arXiv Detail & Related papers (2021-10-27T09:21:35Z) - The Gradient Convergence Bound of Federated Multi-Agent Reinforcement
Learning with Efficient Communication [20.891460617583302]
The paper considers independent reinforcement learning (IRL) for collaborative decision-making in the paradigm of federated learning (FL)
FL generates excessive communication overheads between agents and a remote central server.
This paper proposes two advanced optimization schemes to improve the system's utility value.
arXiv Detail & Related papers (2021-03-24T07:21:43Z) - Mixed Reinforcement Learning with Additive Stochastic Uncertainty [19.229447330293546]
Reinforcement learning (RL) methods often rely on massive exploration data to search optimal policies, and suffer from poor sampling efficiency.
This paper presents a mixed RL algorithm by simultaneously using dual representations of environmental dynamics to search the optimal policy.
The effectiveness of the mixed RL is demonstrated by a typical optimal control problem of non-affine nonlinear systems.
arXiv Detail & Related papers (2020-02-28T08:02:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.