論文の概要: Computational Irreducibility as the Foundation of Agency: A Formal Model Connecting Undecidability to Autonomous Behavior in Complex Systems
- arxiv url: http://arxiv.org/abs/2505.04646v2
- Date: Wed, 11 Jun 2025 13:38:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 02:07:43.194592
- Title: Computational Irreducibility as the Foundation of Agency: A Formal Model Connecting Undecidability to Autonomous Behavior in Complex Systems
- Title(参考訳): エージェンシーの基礎としての計算的不整合性:複雑なシステムにおける非決定性と自律行動とを結びつける形式的モデル
- Authors: Poria Azadi,
- Abstract要約: 我々は正確な数学的つながりを確立し 真に自律的なシステムに対して その将来の行動に関する疑問は 基本的に決定不可能であることを証明します
この発見は、人工知能、生物学的モデリング、そして自由意志のような哲学的概念に重大な影響を及ぼす。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This article presents a formal model demonstrating that genuine autonomy, the ability of a system to self-regulate and pursue objectives, fundamentally implies computational unpredictability from an external perspective. we establish precise mathematical connections, proving that for any truly autonomous system, questions about its future behavior are fundamentally undecidable. this formal undecidability, rather than mere complexity, grounds a principled distinction between autonomous and non-autonomous systems. our framework integrates insights from computational theory and biology, particularly regarding emergent agency and computational irreducibility, to explain how novel information and purpose can arise within a physical universe. the findings have significant implications for artificial intelligence, biological modeling, and philosophical concepts like free will.
- Abstract(参考訳): 本稿では, 真の自律性, 目的を自己統制し追求するシステムの能力, 基本的には外部の観点からの計算的予測不可能性を示唆する形式的モデルを示す。
我々は正確な数学的つながりを確立し 真に自律的なシステムに対して その将来の行動に関する疑問は 基本的に決定不可能であることを証明します
この形式的不決定性は、単なる複雑さというよりは、自律システムと非自律システムとを区別する原則に基づいている。
我々の枠組みは計算理論と生物学、特に創発的エージェンシーと計算不可能性に関する洞察を統合して、新しい情報や目的が物理的な宇宙の中でどのように生まれるかを説明します。
この発見は、人工知能、生物学的モデリング、そして自由意志のような哲学的概念に重要な意味を持つ。
関連論文リスト
- Beyond Statistical Learning: Exact Learning Is Essential for General Intelligence [59.07578850674114]
音の誘惑的推論は、一般知能の必然的に望ましい側面である。
もっとも先進的なフロンティアシステムでさえ、定期的かつ一貫して容易に解決可能な推論タスクに干渉していることは、よく文書化されている。
彼らの不健全な振る舞いは、彼らの発展を支えている統計的学習のアプローチの結果である、と我々は主張する。
論文 参考訳(メタデータ) (2025-06-30T14:37:50Z) - Nature's Insight: A Novel Framework and Comprehensive Analysis of Agentic Reasoning Through the Lens of Neuroscience [11.174550573411008]
エージェント推論のための神経科学に着想を得た新しい枠組みを提案する。
我々は,既存のAI推論手法を体系的に分類し,分析するために,この枠組みを適用した。
本稿では,ニューラルインスパイアされた新しい推論手法を提案する。
論文 参考訳(メタデータ) (2025-05-07T14:25:46Z) - Stochastic, Dynamic, Fluid Autonomy in Agentic AI: Implications for Authorship, Inventorship, and Liability [0.2209921757303168]
エージェントAIシステムは、暗黙の学習を通じて戦略を適応し、自律的に目標を追求する。
人間と機械の貢献は、相互に絡み合った創造的なプロセスに不可避的に絡まってしまう。
法律と政策の枠組みは、人間と機械の貢献を機能的に同等に扱う必要があるかもしれないと我々は主張する。
論文 参考訳(メタデータ) (2025-04-05T04:44:59Z) - Dissociating Artificial Intelligence from Artificial Consciousness [0.4537124110113416]
機械学習と計算能力の発展は、人工知能が手の届くところにあることを示唆している。
コンピューターが人間と機能的に同等なら、私たちが意識しているように、視覚、音、思考を体験するだろうか?
我々は統合情報理論(IIT)を用いて、システムが意識的かどうかを判断するための原則的ツールを提供する。
論文 参考訳(メタデータ) (2024-12-05T19:28:35Z) - Emergence of Self-Identity in AI: A Mathematical Framework and Empirical Study with Generative Large Language Models [4.036530158875673]
本稿では,AIシステムにおける自己同一性の定義と定量化のための数学的枠組みを提案する。
我々の枠組みは、2つの数学的に定量化された条件から自己同一性が生じることを示唆している。
本研究の意義は、ヒューマノイドロボット工学や自律システムの分野に即時に関係している。
論文 参考訳(メタデータ) (2024-11-27T17:23:47Z) - "Efficient Complexity": a Constrained Optimization Approach to the Evolution of Natural Intelligence [0.0]
情報理論、生物物理学、バイオインフォマティクス、熱力学の結合における根本的な疑問は、外部刺激に関する情報が事前に入手できない自然環境における自然知性の発達を導く原理とプロセスに関するものである。
制約付き最適化の枠組みでは,自然学習の情報プロセスの記述に新たなアプローチが提案されている。
構造の複雑さ、可変性、効率性、あるいは提案された形式主義に基づく学習モデルのアーキテクチャの関係に関する非自明な結論は、ニューラルネットワークを生物学的および人工知能における小さな知能ユニットの協調グループとしての有効性を説明することができる。
論文 参考訳(メタデータ) (2024-10-03T11:54:33Z) - Closing the Loop: How Semantic Closure Enables Open-Ended Evolution [0.5755004576310334]
この写本は意味的クロージャの進化的出現を探求している。
関係生物学、物理生物疫学、生態心理学の概念を統一的な計算行動論の枠組みに統合する。
論文 参考訳(メタデータ) (2024-04-05T19:35:38Z) - Mathematical Algorithm Design for Deep Learning under Societal and
Judicial Constraints: The Algorithmic Transparency Requirement [65.26723285209853]
計算モデルにおける透過的な実装が実現可能かどうかを分析するための枠組みを導出する。
以上の結果から,Blum-Shub-Smale Machinesは,逆問題に対する信頼性の高い解法を確立できる可能性が示唆された。
論文 参考訳(メタデータ) (2024-01-18T15:32:38Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
本稿では,関係時間的推論を伴う3つの補助的タスクを提案し,それらを標準のディープラーニングフレームワークに統合する。
これらの補助的なタスクは、他の対話的エージェントの行動パターンを推測するための追加の監視信号を提供する。
提案手法は,標準評価指標の観点から,頑健かつ最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-11-27T18:57:42Z) - Towards Probabilistic Causal Discovery, Inference & Explanations for
Autonomous Drones in Mine Surveying Tasks [5.569226615350014]
因果モデリングは、自律的なエージェントによる意思決定や結果の説明を支援することができる。
ここでは,塩鉱で稼働するドローンシステムにおける因果関係に関する課題を特定する。
本稿では、因果的インフォームドPOMDP計画、オンラインSCM適応、およびポストホックな反事実的説明からなる確率的因果関係の枠組みを提案する。
論文 参考訳(メタデータ) (2023-08-19T15:12:55Z) - Kernel Based Cognitive Architecture for Autonomous Agents [91.3755431537592]
本稿では,認知機能構築への進化的アプローチについて考察する。
本稿では,シンボル創発問題に基づくエージェントの進化を保証する認知アーキテクチャについて考察する。
論文 参考訳(メタデータ) (2022-07-02T12:41:32Z) - Pessimism meets VCG: Learning Dynamic Mechanism Design via Offline
Reinforcement Learning [114.36124979578896]
オフライン強化学習アルゴリズムを用いて動的メカニズムを設計する。
我々のアルゴリズムは悲観主義の原理に基づいており、オフラインデータセットのカバレッジについて軽度な仮定しか必要としない。
論文 参考訳(メタデータ) (2022-05-05T05:44:26Z) - Independent Natural Policy Gradient Methods for Potential Games:
Finite-time Global Convergence with Entropy Regularization [28.401280095467015]
本研究では,独立エントロピー規則化自然ポリシー勾配法(NPG)の有限時間収束について検討する。
提案手法は, 作用空間の大きさに依存しないサブ線形速度で量子応答平衡(QRE)に収束することを示す。
論文 参考訳(メタデータ) (2022-04-12T01:34:02Z) - Automated Machine Learning, Bounded Rationality, and Rational
Metareasoning [62.997667081978825]
有界合理性の観点から、自動機械学習(AutoML)と関連する問題を考察する。
リソース境界の下でアクションを取るには、エージェントがこれらのリソースを最適な方法で利用する方法を反映する必要がある。
論文 参考訳(メタデータ) (2021-09-10T09:10:20Z) - CausalCity: Complex Simulations with Agency for Causal Discovery and
Reasoning [68.74447489372037]
本稿では,因果探索と反事実推論のためのアルゴリズムの開発を目的とした,高忠実度シミュレーション環境を提案する。
私たちの作業の中核となるコンポーネントは、複雑なシナリオを定義して作成することが簡単になるような、テキストの緊急性を導入することです。
我々は3つの最先端の手法による実験を行い、ベースラインを作成し、この環境の可利用性を強調する。
論文 参考訳(メタデータ) (2021-06-25T00:21:41Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - Machine Common Sense [77.34726150561087]
機械の常識は、人工知能(AI)において広範で潜在的に無拘束な問題のままである
本稿では、対人インタラクションのようなドメインに焦点を当てたコモンセンス推論のモデル化の側面について論じる。
論文 参考訳(メタデータ) (2020-06-15T13:59:47Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
本稿では,データ駆動型アプローチと知識駆動型アプローチの強みを組み合わせたフレームワークとして,ハイブリッドAI手法を提案する。
具体的には、知識ベースを用いて深層ニューラルネットワークの学習過程を導く方法として、ニューロシンボリズムの概念を継承する。
論文 参考訳(メタデータ) (2020-03-09T15:04:07Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z) - A Mathematical Framework for Consciousness in Neural Networks [0.0]
本稿では,意識と身体的相関関係の間の説明的ギャップを埋めるための新しい数学的枠組みを提案する。
クエーリアは特異点であると主張するのではなく、クエーリアがなぜそのように感じるのかを「説明」する。
我々は、クォーリアを本質的に複雑性、計算、情報への還元以上の現象として認識する枠組みを確立する。
論文 参考訳(メタデータ) (2017-04-04T18:32:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。