Rethinking Boundary Detection in Deep Learning-Based Medical Image Segmentation
- URL: http://arxiv.org/abs/2505.04652v1
- Date: Tue, 06 May 2025 19:42:56 GMT
- Title: Rethinking Boundary Detection in Deep Learning-Based Medical Image Segmentation
- Authors: Yi Lin, Dong Zhang, Xiao Fang, Yufan Chen, Kwang-Ting Cheng, Hao Chen,
- Abstract summary: We propose a novel network architecture named CTO, which combines Convolutional Neural Networks (CNNs), Vision Transformer (ViT) models, and explicit edge detection operators.<n>CTO surpasses existing methods in terms of segmentation accuracy and strikes a better balance between accuracy and efficiency.<n>We validate the performance of CTO through extensive experiments conducted on seven challenging medical image segmentation datasets.
- Score: 29.37619692272332
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical image segmentation is a pivotal task within the realms of medical image analysis and computer vision. While current methods have shown promise in accurately segmenting major regions of interest, the precise segmentation of boundary areas remains challenging. In this study, we propose a novel network architecture named CTO, which combines Convolutional Neural Networks (CNNs), Vision Transformer (ViT) models, and explicit edge detection operators to tackle this challenge. CTO surpasses existing methods in terms of segmentation accuracy and strikes a better balance between accuracy and efficiency, without the need for additional data inputs or label injections. Specifically, CTO adheres to the canonical encoder-decoder network paradigm, with a dual-stream encoder network comprising a mainstream CNN stream for capturing local features and an auxiliary StitchViT stream for integrating long-range dependencies. Furthermore, to enhance the model's ability to learn boundary areas, we introduce a boundary-guided decoder network that employs binary boundary masks generated by dedicated edge detection operators to provide explicit guidance during the decoding process. We validate the performance of CTO through extensive experiments conducted on seven challenging medical image segmentation datasets, namely ISIC 2016, PH2, ISIC 2018, CoNIC, LiTS17, and BTCV. Our experimental results unequivocally demonstrate that CTO achieves state-of-the-art accuracy on these datasets while maintaining competitive model complexity. The codes have been released at: https://github.com/xiaofang007/CTO.
Related papers
- CENet: Context Enhancement Network for Medical Image Segmentation [3.4690322157094573]
We propose the Context Enhancement Network (CENet), a novel segmentation framework featuring two key innovations.<n>First, the Dual Selective Enhancement Block (DSEB) integrated into skip connections enhances boundary details and improves the detection of smaller organs in a context-aware manner.<n>Second, the Context Feature Attention Module (CFAM) in the decoder employs a multi-scale design to maintain spatial integrity, reduce feature redundancy, and mitigate overly enhanced representations.
arXiv Detail & Related papers (2025-05-23T23:22:18Z) - BRAU-Net++: U-Shaped Hybrid CNN-Transformer Network for Medical Image Segmentation [11.986549780782724]
We propose a hybrid yet effective CNN-Transformer network, named BRAU-Net++, for an accurate medical image segmentation task.
Specifically, BRAU-Net++ uses bi-level routing attention as the core building block to design our u-shaped encoder-decoder structure.
Our proposed approach surpasses other state-of-the-art methods including its baseline: BRAU-Net.
arXiv Detail & Related papers (2024-01-01T10:49:09Z) - Feature Enhancer Segmentation Network (FES-Net) for Vessel Segmentation [19.455350961592742]
We propose a novel feature enhancement segmentation network (FES-Net) that achieves accurate pixel-wise segmentation without requiring additional image enhancement steps.
FES-Net directly processes the input image and utilizes four prompt convolutional blocks (PCBs) during downsampling.
We evaluate the performance of FES-Net on four publicly available state-of-the-art datasets: DRIVE, STARE, CHASE, and HRF.
arXiv Detail & Related papers (2023-09-07T07:46:46Z) - Rethinking Boundary Detection in Deep Learning Models for Medical Image
Segmentation [27.322629156662547]
A novel network architecture, referred to as Convolution, Transformer, and Operator (CTO) is proposed.
CTO employs a combination of Convolutional Neural Networks (CNNs), Vision Transformer (ViT), and an explicit boundary detection operator to achieve high recognition accuracy.
The performance of the proposed method is evaluated on six challenging medical image segmentation datasets.
arXiv Detail & Related papers (2023-05-01T06:13:08Z) - Focused Decoding Enables 3D Anatomical Detection by Transformers [64.36530874341666]
We propose a novel Detection Transformer for 3D anatomical structure detection, dubbed Focused Decoder.
Focused Decoder leverages information from an anatomical region atlas to simultaneously deploy query anchors and restrict the cross-attention's field of view.
We evaluate our proposed approach on two publicly available CT datasets and demonstrate that Focused Decoder not only provides strong detection results and thus alleviates the need for a vast amount of annotated data but also exhibits exceptional and highly intuitive explainability of results via attention weights.
arXiv Detail & Related papers (2022-07-21T22:17:21Z) - BCS-Net: Boundary, Context and Semantic for Automatic COVID-19 Lung
Infection Segmentation from CT Images [83.82141604007899]
BCS-Net is a novel network for automatic COVID-19 lung infection segmentation from CT images.
BCS-Net follows an encoder-decoder architecture, and more designs focus on the decoder stage.
In each BCSR block, the attention-guided global context (AGGC) module is designed to learn the most valuable encoder features for decoder.
arXiv Detail & Related papers (2022-07-17T08:54:07Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
We construct a novel interpretable dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded.
We analyze the CT values among different tissues, and merge the prior observations into a prior network for our InDuDoNet+, which significantly improve its generalization performance.
arXiv Detail & Related papers (2021-12-23T15:52:37Z) - TransUNet: Transformers Make Strong Encoders for Medical Image
Segmentation [78.01570371790669]
Medical image segmentation is an essential prerequisite for developing healthcare systems.
On various medical image segmentation tasks, the u-shaped architecture, also known as U-Net, has become the de-facto standard.
We propose TransUNet, which merits both Transformers and U-Net, as a strong alternative for medical image segmentation.
arXiv Detail & Related papers (2021-02-08T16:10:50Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Boundary-aware Context Neural Network for Medical Image Segmentation [15.585851505721433]
Medical image segmentation can provide reliable basis for further clinical analysis and disease diagnosis.
Most existing CNNs-based methods produce unsatisfactory segmentation mask without accurate object boundaries.
In this paper, we formulate a boundary-aware context neural network (BA-Net) for 2D medical image segmentation.
arXiv Detail & Related papers (2020-05-03T02:35:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.