Rethinking Boundary Detection in Deep Learning Models for Medical Image
Segmentation
- URL: http://arxiv.org/abs/2305.00678v1
- Date: Mon, 1 May 2023 06:13:08 GMT
- Title: Rethinking Boundary Detection in Deep Learning Models for Medical Image
Segmentation
- Authors: Yi Lin, Dong Zhang, Xiao Fang, Yufan Chen, Kwang-Ting Cheng, Hao Chen
- Abstract summary: A novel network architecture, referred to as Convolution, Transformer, and Operator (CTO) is proposed.
CTO employs a combination of Convolutional Neural Networks (CNNs), Vision Transformer (ViT), and an explicit boundary detection operator to achieve high recognition accuracy.
The performance of the proposed method is evaluated on six challenging medical image segmentation datasets.
- Score: 27.322629156662547
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical image segmentation is a fundamental task in the community of medical
image analysis. In this paper, a novel network architecture, referred to as
Convolution, Transformer, and Operator (CTO), is proposed. CTO employs a
combination of Convolutional Neural Networks (CNNs), Vision Transformer (ViT),
and an explicit boundary detection operator to achieve high recognition
accuracy while maintaining an optimal balance between accuracy and efficiency.
The proposed CTO follows the standard encoder-decoder segmentation paradigm,
where the encoder network incorporates a popular CNN backbone for capturing
local semantic information, and a lightweight ViT assistant for integrating
long-range dependencies. To enhance the learning capacity on boundary, a
boundary-guided decoder network is proposed that uses a boundary mask obtained
from a dedicated boundary detection operator as explicit supervision to guide
the decoding learning process. The performance of the proposed method is
evaluated on six challenging medical image segmentation datasets, demonstrating
that CTO achieves state-of-the-art accuracy with a competitive model
complexity.
Related papers
- TBConvL-Net: A Hybrid Deep Learning Architecture for Robust Medical Image Segmentation [6.013821375459473]
We introduce a novel deep learning architecture for medical image segmentation.
Our proposed model shows consistent improvement over the state of the art on ten publicly available datasets.
arXiv Detail & Related papers (2024-09-05T09:14:03Z) - Feature Enhancer Segmentation Network (FES-Net) for Vessel Segmentation [19.455350961592742]
We propose a novel feature enhancement segmentation network (FES-Net) that achieves accurate pixel-wise segmentation without requiring additional image enhancement steps.
FES-Net directly processes the input image and utilizes four prompt convolutional blocks (PCBs) during downsampling.
We evaluate the performance of FES-Net on four publicly available state-of-the-art datasets: DRIVE, STARE, CHASE, and HRF.
arXiv Detail & Related papers (2023-09-07T07:46:46Z) - Self-supervised Semantic Segmentation: Consistency over Transformation [3.485615723221064]
We propose a novel self-supervised algorithm, textbfS$3$-Net, which integrates a robust framework based on the proposed Inception Large Kernel Attention (I-LKA) modules.
We leverage deformable convolution as an integral component to effectively capture and delineate lesion deformations for superior object boundary definition.
Our experimental results on skin lesion and lung organ segmentation tasks show the superior performance of our method compared to the SOTA approaches.
arXiv Detail & Related papers (2023-08-31T21:28:46Z) - Focused Decoding Enables 3D Anatomical Detection by Transformers [64.36530874341666]
We propose a novel Detection Transformer for 3D anatomical structure detection, dubbed Focused Decoder.
Focused Decoder leverages information from an anatomical region atlas to simultaneously deploy query anchors and restrict the cross-attention's field of view.
We evaluate our proposed approach on two publicly available CT datasets and demonstrate that Focused Decoder not only provides strong detection results and thus alleviates the need for a vast amount of annotated data but also exhibits exceptional and highly intuitive explainability of results via attention weights.
arXiv Detail & Related papers (2022-07-21T22:17:21Z) - BCS-Net: Boundary, Context and Semantic for Automatic COVID-19 Lung
Infection Segmentation from CT Images [83.82141604007899]
BCS-Net is a novel network for automatic COVID-19 lung infection segmentation from CT images.
BCS-Net follows an encoder-decoder architecture, and more designs focus on the decoder stage.
In each BCSR block, the attention-guided global context (AGGC) module is designed to learn the most valuable encoder features for decoder.
arXiv Detail & Related papers (2022-07-17T08:54:07Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
We construct a novel interpretable dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded.
We analyze the CT values among different tissues, and merge the prior observations into a prior network for our InDuDoNet+, which significantly improve its generalization performance.
arXiv Detail & Related papers (2021-12-23T15:52:37Z) - Atrous Residual Interconnected Encoder to Attention Decoder Framework
for Vertebrae Segmentation via 3D Volumetric CT Images [1.8146155083014204]
This paper proposes a novel algorithm for automated vertebrae segmentation via 3D volumetric spine CT images.
The proposed model is based on the structure of encoder to decoder, using layer normalization to optimize mini-batch training performance.
The experimental results show that our model achieves competitive performance compared with other state-of-the-art medical semantic segmentation methods.
arXiv Detail & Related papers (2021-04-08T12:09:16Z) - TransUNet: Transformers Make Strong Encoders for Medical Image
Segmentation [78.01570371790669]
Medical image segmentation is an essential prerequisite for developing healthcare systems.
On various medical image segmentation tasks, the u-shaped architecture, also known as U-Net, has become the de-facto standard.
We propose TransUNet, which merits both Transformers and U-Net, as a strong alternative for medical image segmentation.
arXiv Detail & Related papers (2021-02-08T16:10:50Z) - Collaborative Boundary-aware Context Encoding Networks for Error Map
Prediction [65.44752447868626]
We propose collaborative boundaryaware context encoding networks called AEP-Net for error prediction task.
Specifically, we propose a collaborative feature transformation branch for better feature fusion between images and masks, and precise localization of error regions.
The AEP-Net achieves an average DSC of 0.8358, 0.8164 for error prediction task, and shows a high Pearson correlation coefficient of 0.9873.
arXiv Detail & Related papers (2020-06-25T12:42:01Z) - Boundary-aware Context Neural Network for Medical Image Segmentation [15.585851505721433]
Medical image segmentation can provide reliable basis for further clinical analysis and disease diagnosis.
Most existing CNNs-based methods produce unsatisfactory segmentation mask without accurate object boundaries.
In this paper, we formulate a boundary-aware context neural network (BA-Net) for 2D medical image segmentation.
arXiv Detail & Related papers (2020-05-03T02:35:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.