Advancing 3D Medical Image Segmentation: Unleashing the Potential of Planarian Neural Networks in Artificial Intelligence
- URL: http://arxiv.org/abs/2505.04664v1
- Date: Wed, 07 May 2025 03:54:37 GMT
- Title: Advancing 3D Medical Image Segmentation: Unleashing the Potential of Planarian Neural Networks in Artificial Intelligence
- Authors: Ziyuan Huang, Kevin Huggins, Srikar Bellur,
- Abstract summary: PNN-UNet is a method for constructing deep neural networks that replicate the planarian neural network structure.<n>PNN-UNet comprises a Deep-UNet and a Wide-UNet as the nerve cords, with a densely connected autoencoder performing the role of the brain.<n>Our outcomes on a 3D MRI dataset, with and without data augmentation, demonstrate that PNN-UNet outperforms the baseline UNet in image segmentation.
- Score: 6.3447893760573955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Our study presents PNN-UNet as a method for constructing deep neural networks that replicate the planarian neural network (PNN) structure in the context of 3D medical image data. Planarians typically have a cerebral structure comprising two neural cords, where the cerebrum acts as a coordinator, and the neural cords serve slightly different purposes within the organism's neurological system. Accordingly, PNN-UNet comprises a Deep-UNet and a Wide-UNet as the nerve cords, with a densely connected autoencoder performing the role of the brain. This distinct architecture offers advantages over both monolithic (UNet) and modular networks (Ensemble-UNet). Our outcomes on a 3D MRI hippocampus dataset, with and without data augmentation, demonstrate that PNN-UNet outperforms the baseline UNet and several other UNet variants in image segmentation.
Related papers
- Joint Learning Neuronal Skeleton and Brain Circuit Topology with Permutation Invariant Encoders for Neuron Classification [33.47541392305739]
We propose NeuNet framework that combines morphological information of neurons obtained from skeleton and topological information between neurons obtained from neural circuit.
We reprocess and release two new datasets for neuron classification task from volume electron microscopy(VEM) images of human brain cortex and Drosophila brain.
arXiv Detail & Related papers (2023-12-22T08:31:11Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Transferability of coVariance Neural Networks and Application to
Interpretable Brain Age Prediction using Anatomical Features [119.45320143101381]
Graph convolutional networks (GCN) leverage topology-driven graph convolutional operations to combine information across the graph for inference tasks.
We have studied GCNs with covariance matrices as graphs in the form of coVariance neural networks (VNNs)
VNNs inherit the scale-free data processing architecture from GCNs and here, we show that VNNs exhibit transferability of performance over datasets whose covariance matrices converge to a limit object.
arXiv Detail & Related papers (2023-05-02T22:15:54Z) - Multi-pooling 3D Convolutional Neural Network for fMRI Classification of
Visual Brain States [3.19429184376611]
This paper proposed a multi-pooling 3D convolutional neural network (MP3DCNN) to improve fMRI classification accuracy.
MP3DCNN is mainly composed of a three-layer 3DCNN, where the first and second layers of 3D convolutions each have a branch of pooling connection.
arXiv Detail & Related papers (2023-03-25T07:54:51Z) - Predicting Brain Age using Transferable coVariance Neural Networks [119.45320143101381]
We have recently studied covariance neural networks (VNNs) that operate on sample covariance matrices.
In this paper, we demonstrate the utility of VNNs in inferring brain age using cortical thickness data.
Our results show that VNNs exhibit multi-scale and multi-site transferability for inferring brain age
In the context of brain age in Alzheimer's disease (AD), our experiments show that i) VNN outputs are interpretable as brain age predicted using VNNs is significantly elevated for AD with respect to healthy subjects.
arXiv Detail & Related papers (2022-10-28T18:58:34Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
We propose a novel brain network representation framework, namely BN-GNN, which searches for the optimal GNN architecture for each brain network.
Our proposed BN-GNN improves the performance of traditional GNNs on different brain network analysis tasks.
arXiv Detail & Related papers (2022-03-18T07:05:27Z) - Modeling Spatio-Temporal Dynamics in Brain Networks: A Comparison of
Graph Neural Network Architectures [0.5033155053523041]
Graph neural networks (GNNs) provide a possibility to interpret new structured graph signals.
We show that by learning localized functional interactions on the substrate, GNN based approaches are able to robustly scale to large network studies.
arXiv Detail & Related papers (2021-12-08T12:57:13Z) - Joint Embedding of Structural and Functional Brain Networks with Graph
Neural Networks for Mental Illness Diagnosis [17.48272758284748]
Graph Neural Networks (GNNs) have become a de facto model for analyzing graph-structured data.
We develop a novel multiview GNN for multimodal brain networks.
In particular, we regard each modality as a view for brain networks and employ contrastive learning for multimodal fusion.
arXiv Detail & Related papers (2021-07-07T13:49:57Z) - On Tractable Representations of Binary Neural Networks [23.50970665150779]
We consider the compilation of a binary neural network's decision function into tractable representations such as Ordered Binary Decision Diagrams (OBDDs) and Sentential Decision Diagrams (SDDs)
In experiments, we show that it is feasible to obtain compact representations of neural networks as SDDs.
arXiv Detail & Related papers (2020-04-05T03:21:26Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
We show that a standard neuron followed by our novel apical dendrite activation (ADA) can learn the XOR logical function with 100% accuracy.
We conduct experiments on six benchmark data sets from computer vision, signal processing and natural language processing.
arXiv Detail & Related papers (2020-02-02T21:09:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.