Piecewise Constant Spectral Graph Neural Network
- URL: http://arxiv.org/abs/2505.04808v1
- Date: Wed, 07 May 2025 21:17:06 GMT
- Title: Piecewise Constant Spectral Graph Neural Network
- Authors: Vahan Martirosyan, Jhony H. Giraldo, Fragkiskos D. Malliaros,
- Abstract summary: Graph Neural Networks (GNNs) have achieved significant success across various domains by leveraging graph structures in data.<n>Existing spectral GNNs, which use low-degree filters to capture spectral properties, may not fully identify the graph's spectral characteristics because of small degree.<n>We introduce the Constant Piecewise Spectral Graph Neural Network(PieCoN) to address these challenges.
- Score: 5.048196692772085
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have achieved significant success across various domains by leveraging graph structures in data. Existing spectral GNNs, which use low-degree polynomial filters to capture graph spectral properties, may not fully identify the graph's spectral characteristics because of the polynomial's small degree. However, increasing the polynomial degree is computationally expensive and beyond certain thresholds leads to performance plateaus or degradation. In this paper, we introduce the Piecewise Constant Spectral Graph Neural Network(PieCoN) to address these challenges. PieCoN combines constant spectral filters with polynomial filters to provide a more flexible way to leverage the graph structure. By adaptively partitioning the spectrum into intervals, our approach increases the range of spectral properties that can be effectively learned. Experiments on nine benchmark datasets, including both homophilic and heterophilic graphs, demonstrate that PieCoN is particularly effective on heterophilic datasets, highlighting its potential for a wide range of applications.
Related papers
- Large-Scale Spectral Graph Neural Networks via Laplacian Sparsification: Technical Report [21.288230563135055]
We propose a novel graph spectral sparsification method to approximate the propagation patterns of spectral Graph Neural Networks (GNNs)<n>Our method allows the application of linear layers on the input node features, enabling end-to-end training as well as the handling of raw features.
arXiv Detail & Related papers (2025-01-08T15:36:19Z) - GrassNet: State Space Model Meets Graph Neural Network [57.62885438406724]
Graph State Space Network (GrassNet) is a novel graph neural network with theoretical support that provides a simple yet effective scheme for designing arbitrary graph spectral filters.
To the best of our knowledge, our work is the first to employ SSMs for the design of graph GNN spectral filters.
Extensive experiments on nine public benchmarks reveal that GrassNet achieves superior performance in real-world graph modeling tasks.
arXiv Detail & Related papers (2024-08-16T07:33:58Z) - Polynomial Selection in Spectral Graph Neural Networks: An Error-Sum of Function Slices Approach [26.79625547648669]
Spectral graph networks are proposed to harness spectral information inherent in graph neural data through the application of graph filters.<n>We show that various choices greatly impact spectral GNN performance, underscoring the importance of parameter selection.<n>We develop an advanced filter based on trigonometrics, a widely adopted option for approxing narrow signal slices.
arXiv Detail & Related papers (2024-04-15T11:35:32Z) - HoloNets: Spectral Convolutions do extend to Directed Graphs [59.851175771106625]
Conventional wisdom dictates that spectral convolutional networks may only be deployed on undirected graphs.
Here we show this traditional reliance on the graph Fourier transform to be superfluous.
We provide a frequency-response interpretation of newly developed filters, investigate the influence of the basis used to express filters and discuss the interplay with characteristic operators on which networks are based.
arXiv Detail & Related papers (2023-10-03T17:42:09Z) - Specformer: Spectral Graph Neural Networks Meet Transformers [51.644312964537356]
Spectral graph neural networks (GNNs) learn graph representations via spectral-domain graph convolutions.
We introduce Specformer, which effectively encodes the set of all eigenvalues and performs self-attention in the spectral domain.
By stacking multiple Specformer layers, one can build a powerful spectral GNN.
arXiv Detail & Related papers (2023-03-02T07:36:23Z) - Spectral-Spatial Global Graph Reasoning for Hyperspectral Image
Classification [50.899576891296235]
Convolutional neural networks have been widely applied to hyperspectral image classification.
Recent methods attempt to address this issue by performing graph convolutions on spatial topologies.
arXiv Detail & Related papers (2021-06-26T06:24:51Z) - Graph Neural Networks with Adaptive Frequency Response Filter [55.626174910206046]
We develop a graph neural network framework AdaGNN with a well-smooth adaptive frequency response filter.
We empirically validate the effectiveness of the proposed framework on various benchmark datasets.
arXiv Detail & Related papers (2021-04-26T19:31:21Z) - Stacked Graph Filter [19.343260981528186]
We study Graph Convolutional Networks (GCN) from the graph signal processing viewpoint.
We find that by stacking graph filters with learnable solution parameters, we can build a highly adaptive and robust graph classification model.
arXiv Detail & Related papers (2020-11-22T11:20:14Z) - Gaussian Processes on Graphs via Spectral Kernel Learning [9.260186030255081]
We propose a graph spectrum-based Gaussian process for prediction of signals defined on nodes of the graph.
We demonstrate the interpretability of the model in synthetic experiments from which we show the various ground truth spectral filters can be accurately recovered.
arXiv Detail & Related papers (2020-06-12T17:51:22Z) - Graphon Pooling in Graph Neural Networks [169.09536309161314]
Graph neural networks (GNNs) have been used effectively in different applications involving the processing of signals on irregular structures modeled by graphs.
We propose a new strategy for pooling and sampling on GNNs using graphons which preserves the spectral properties of the graph.
arXiv Detail & Related papers (2020-03-03T21:04:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.