Osiris: A Lightweight Open-Source Hallucination Detection System
- URL: http://arxiv.org/abs/2505.04844v1
- Date: Wed, 07 May 2025 22:45:59 GMT
- Title: Osiris: A Lightweight Open-Source Hallucination Detection System
- Authors: Alex Shan, John Bauer, Christopher D. Manning,
- Abstract summary: hallucinations prevent RAG systems from being deployed in production environments.<n>We introduce a multi-hop QA dataset with induced hallucinations.<n>We achieve better recall with a 7B model than GPT-4o on the RAGTruth hallucination detection benchmark.
- Score: 30.63248848082757
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieval-Augmented Generation (RAG) systems have gained widespread adoption by application builders because they leverage sources of truth to enable Large Language Models (LLMs) to generate more factually sound responses. However, hallucinations, instances of LLM responses that are unfaithful to the provided context, often prevent these systems from being deployed in production environments. Current hallucination detection methods typically involve human evaluation or the use of closed-source models to review RAG system outputs for hallucinations. Both human evaluators and closed-source models suffer from scaling issues due to their high costs and slow inference speeds. In this work, we introduce a perturbed multi-hop QA dataset with induced hallucinations. Via supervised fine-tuning on our dataset, we achieve better recall with a 7B model than GPT-4o on the RAGTruth hallucination detection benchmark and offer competitive performance on precision and accuracy, all while using a fraction of the parameters. Code is released at our repository.
Related papers
- Generate, but Verify: Reducing Hallucination in Vision-Language Models with Retrospective Resampling [67.14942827452161]
Vision-Language Models (VLMs) excel at visual understanding but often suffer from visual hallucinations.<n>In this work, we introduce REVERSE, a unified framework that integrates hallucination-aware training with on-the-fly self-verification.
arXiv Detail & Related papers (2025-04-17T17:59:22Z) - ReDeEP: Detecting Hallucination in Retrieval-Augmented Generation via Mechanistic Interpretability [27.325766792146936]
hallucinations caused by insufficient parametric (internal) knowledge.<n>Detecting such hallucinations requires disentangling how Large Language Models (LLMs) utilize external and parametric knowledge.<n>We propose ReDeEP, a novel method that detects hallucinations by decoupling LLM's utilization of external context and parametric knowledge.
arXiv Detail & Related papers (2024-10-15T09:02:09Z) - Mitigating Entity-Level Hallucination in Large Language Models [11.872916697604278]
This paper proposes Dynamic Retrieval Augmentation based on hallucination Detection (DRAD) as a novel method to detect and mitigate hallucinations in Large Language Models (LLMs)
Experiment results show that DRAD demonstrates superior performance in both detecting and mitigating hallucinations in LLMs.
arXiv Detail & Related papers (2024-07-12T16:47:34Z) - ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models [65.12177400764506]
Large language models (LLMs) exhibit hallucinations in long-form question-answering tasks across various domains and wide applications.<n>Current hallucination detection and mitigation datasets are limited in domains and sizes.<n>This paper introduces an iterative self-training framework that simultaneously and progressively scales up the hallucination annotation dataset.
arXiv Detail & Related papers (2024-07-05T17:56:38Z) - Hallucination Detection: Robustly Discerning Reliable Answers in Large Language Models [70.19081534515371]
Large Language Models (LLMs) have gained widespread adoption in various natural language processing tasks.
They generate unfaithful or inconsistent content that deviates from the input source, leading to severe consequences.
We propose a robust discriminator named RelD to effectively detect hallucination in LLMs' generated answers.
arXiv Detail & Related papers (2024-07-04T18:47:42Z) - Luna: An Evaluation Foundation Model to Catch Language Model Hallucinations with High Accuracy and Low Cost [1.9228454602072242]
Retriever Augmented Generation (RAG) systems have become pivotal in enhancing the capabilities of language models.
Current hallucination detection techniques fail to deliver accuracy, low latency, and low cost simultaneously.
We introduce Luna: a DeBERTA-large (440M) encoder, finetuned for hallucination detection in RAG settings.
arXiv Detail & Related papers (2024-06-03T04:14:21Z) - Detecting and Mitigating Hallucination in Large Vision Language Models via Fine-Grained AI Feedback [40.930238150365795]
We propose detecting and mitigating hallucinations in Large Vision Language Models (LVLMs) via fine-grained AI feedback.<n>We generate a small-size hallucination annotation dataset by proprietary models.<n>Then, we propose a detect-then-rewrite pipeline to automatically construct preference dataset for training hallucination mitigating model.
arXiv Detail & Related papers (2024-04-22T14:46:10Z) - HalluciDoctor: Mitigating Hallucinatory Toxicity in Visual Instruction Data [102.56792377624927]
hallucinations inherent in machine-generated data remain under-explored.
We present a novel hallucination detection and elimination framework, HalluciDoctor, based on the cross-checking paradigm.
Our method successfully mitigates 44.6% hallucinations relatively and maintains competitive performance compared to LLaVA.
arXiv Detail & Related papers (2023-11-22T04:52:58Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
This paper presents ReEval, an LLM-based framework using prompt chaining to perturb the original evidence for generating new test cases.
We implement ReEval using ChatGPT and evaluate the resulting variants of two popular open-domain QA datasets.
Our generated data is human-readable and useful to trigger hallucination in large language models.
arXiv Detail & Related papers (2023-10-19T06:37:32Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
This paper introduces a method for automatically constructing model-specific hallucination datasets based on existing fact-checking datasets called AutoHall.
We also propose a zero-resource and black-box hallucination detection method based on self-contradiction.
arXiv Detail & Related papers (2023-09-30T05:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.