論文の概要: A Simple Detector with Frame Dynamics is a Strong Tracker
- arxiv url: http://arxiv.org/abs/2505.04917v1
- Date: Thu, 08 May 2025 03:16:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-09 21:43:49.73473
- Title: A Simple Detector with Frame Dynamics is a Strong Tracker
- Title(参考訳): フレームダイナミクスを用いた簡易検知器は強追尾器である
- Authors: Chenxu Peng, Chenxu Wang, Minrui Zou, Danyang Li, Zhengpeng Yang, Yimian Dai, Ming-Ming Cheng, Xiang Li,
- Abstract要約: 赤外線物体追跡は、反無人航空機(Anti-UAV)の用途において重要な役割を担っている。
既存のトラッカーは、しばしば収穫されたテンプレート領域に依存し、モーションモデリング機能に制限がある。
我々は,グローバルな検出と動き認識学習を統合することで,トラッキング性能を向上させる,シンプルで効果的な赤外線小物体トラッカーを提案する。
- 参考スコア(独自算出の注目度): 43.912410355089634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Infrared object tracking plays a crucial role in Anti-Unmanned Aerial Vehicle (Anti-UAV) applications. Existing trackers often depend on cropped template regions and have limited motion modeling capabilities, which pose challenges when dealing with tiny targets. To address this, we propose a simple yet effective infrared tiny-object tracker that enhances tracking performance by integrating global detection and motion-aware learning with temporal priors. Our method is based on object detection and achieves significant improvements through two key innovations. First, we introduce frame dynamics, leveraging frame difference and optical flow to encode both prior target features and motion characteristics at the input level, enabling the model to better distinguish the target from background clutter. Second, we propose a trajectory constraint filtering strategy in the post-processing stage, utilizing spatio-temporal priors to suppress false positives and enhance tracking robustness. Extensive experiments show that our method consistently outperforms existing approaches across multiple metrics in challenging infrared UAV tracking scenarios. Notably, we achieve state-of-the-art performance in the 4th Anti-UAV Challenge, securing 1st place in Track 1 and 2nd place in Track 2.
- Abstract(参考訳): 赤外線物体追跡は、反無人航空機(Anti-UAV)の用途において重要な役割を担っている。
既存のトラッカーは、しばしば収穫されたテンプレート領域に依存し、限られたモーションモデリング能力を持ち、小さなターゲットを扱う際に問題を引き起こす。
そこで本研究では,グローバルな検出と動き認識学習を時間的先行学習と統合することにより,トラッキング性能を向上させる,シンプルで効果的な赤外線小物体トラッカーを提案する。
本手法はオブジェクト検出をベースとして,2つの重要なイノベーションを通じて大幅な改善を実現している。
まず、フレームの差分と光フローを利用して、入力レベルでの事前の目標特徴と運動特性の両方を符号化し、モデルが背景の乱れとよりよく区別できるようにする。
第2に,偽陽性を抑え,ロバスト性を高めるために時空間前処理を利用したトラジェクトリ制約フィルタリング手法を提案する。
広汎な実験により、我々の手法は、赤外線UAV追跡のシナリオにおいて、複数のメトリクスにわたる既存の手法よりも一貫して優れていることが示された。
特に,第4回反UAVチャレンジでは,トラック1で1位,トラック2で2位を獲得し,最先端のパフォーマンスを達成した。
関連論文リスト
- A Cross-Scene Benchmark for Open-World Drone Active Tracking [54.235808061746525]
Drone Visual Active Trackingは、視覚的な観察に基づいてモーションシステムを制御することで、対象物を自律的に追跡することを目的としている。
DATと呼ばれるオープンワールドドローンアクティブトラッキングのためのクロスシーンクロスドメインベンチマークを提案する。
また、R-VATと呼ばれる強化学習に基づくドローン追跡手法を提案する。
論文 参考訳(メタデータ) (2024-12-01T09:37:46Z) - SFTrack: A Robust Scale and Motion Adaptive Algorithm for Tracking Small and Fast Moving Objects [2.9803250365852443]
本稿では,無人航空機(UAV)映像における多物体追跡の問題に対処する。
交通監視システムや警察によるリアルタイム容疑者追跡など、様々なUAVアプリケーションにおいて重要な役割を果たしている。
低信頼度検出から対象物体の追跡を開始する新しい追跡戦略を提案する。
論文 参考訳(メタデータ) (2024-10-26T05:09:20Z) - Learning Motion Blur Robust Vision Transformers with Dynamic Early Exit for Real-Time UAV Tracking [14.382072224997074]
トレーニング済みのViTバックボーンを使用したシングルストリームアーキテクチャでは、パフォーマンス、効率、堅牢性が改善されている。
リアルタイムなUAV追跡のためにTransformerブロックを動的に終了する適応型フレームワークにすることで、このフレームワークの効率を向上する。
また, 動きのぼかし処理におけるViTsの有効性も改善した。これは, UAV, 追跡対象の速さ, あるいはその両方によって生じるUAVトラッキングの共通問題である。
論文 参考訳(メタデータ) (2024-07-07T14:10:04Z) - Exploring Dynamic Transformer for Efficient Object Tracking [58.120191254379854]
効率的なトラッキングのための動的トランスフォーマーフレームワークであるDyTrackを提案する。
DyTrackは、様々な入力に対して適切な推論ルートを設定することを学習し、利用可能な計算予算をより活用する。
複数のベンチマークの実験では、DyTrackは単一のモデルで有望な速度精度のトレードオフを実現している。
論文 参考訳(メタデータ) (2024-03-26T12:31:58Z) - Iterative Scale-Up ExpansionIoU and Deep Features Association for
Multi-Object Tracking in Sports [26.33239898091364]
本稿では,スポーツシナリオに対するDeep ExpansionIoU (Deep-EIoU) という,オンラインかつ堅牢な多対象追跡手法を提案する。
従来の手法とは異なり、カルマンフィルタの使用を放棄し、スポーツシナリオにおける拡張IoUの反復的なスケールアップと深い特徴を活用して、ロバストなトラッキングを行う。
提案手法は,SportsMOTデータセットで77.2%,SportsNet-Trackingデータセットで85.4%を達成し,不規則な動き物体の追跡に顕著な効果を示した。
論文 参考訳(メタデータ) (2023-06-22T17:47:08Z) - MotionTrack: Learning Motion Predictor for Multiple Object Tracking [68.68339102749358]
本研究では,学習可能なモーション予測器を中心に,新しいモーショントラッカーであるMotionTrackを紹介する。
実験結果から、MotionTrackはDancetrackやSportsMOTといったデータセット上での最先端のパフォーマンスを示す。
論文 参考訳(メタデータ) (2023-06-05T04:24:11Z) - Distractor-Aware Fast Tracking via Dynamic Convolutions and MOT
Philosophy [63.91005999481061]
実用的長期トラッカーは、典型的には3つの重要な特性を含む。
効率的なモデル設計、効果的なグローバル再検出戦略、堅牢な気晴らし認識メカニズム。
動的畳み込み (d-convs) と多重オブジェクト追跡 (MOT) の哲学を用いて, 注意をそらした高速トラッキングを実現するための2タスクトラッキングフレームワーク(DMTrack)を提案する。
我々のトラッカーはLaSOT, OxUvA, TLP, VOT2018LT, VOT 2019LTベンチマークの最先端性能を実現し, リアルタイム3倍高速に動作させる。
論文 参考訳(メタデータ) (2021-04-25T00:59:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。