論文の概要: DINO-CoDT: Multi-class Collaborative Detection and Tracking with Vision Foundation Models
- arxiv url: http://arxiv.org/abs/2506.07375v1
- Date: Mon, 09 Jun 2025 02:49:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 16:33:10.787014
- Title: DINO-CoDT: Multi-class Collaborative Detection and Tracking with Vision Foundation Models
- Title(参考訳): DINO-CoDT:ビジョンファウンデーションモデルを用いた複数クラス協調検出・追跡
- Authors: Xunjie He, Christina Dao Wen Lee, Meiling Wang, Chengran Yuan, Zefan Huang, Yufeng Yue, Marcelo H. Ang Jr,
- Abstract要約: 道路利用者を対象とした多クラス協調検出・追跡フレームワークを提案する。
まず,大域的空間注意融合(GSAF)モジュールを用いた検出器を提案する。
次に,視覚基盤モデルを用いた視覚的セマンティクスを活用し,IDSW(ID SWitch)エラーを効果的に低減するトラックレットRe-IDentification(REID)モジュールを提案する。
- 参考スコア(独自算出の注目度): 11.34839442803445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collaborative perception plays a crucial role in enhancing environmental understanding by expanding the perceptual range and improving robustness against sensor failures, which primarily involves collaborative 3D detection and tracking tasks. The former focuses on object recognition in individual frames, while the latter captures continuous instance tracklets over time. However, existing works in both areas predominantly focus on the vehicle superclass, lacking effective solutions for both multi-class collaborative detection and tracking. This limitation hinders their applicability in real-world scenarios, which involve diverse object classes with varying appearances and motion patterns. To overcome these limitations, we propose a multi-class collaborative detection and tracking framework tailored for diverse road users. We first present a detector with a global spatial attention fusion (GSAF) module, enhancing multi-scale feature learning for objects of varying sizes. Next, we introduce a tracklet RE-IDentification (REID) module that leverages visual semantics with a vision foundation model to effectively reduce ID SWitch (IDSW) errors, in cases of erroneous mismatches involving small objects like pedestrians. We further design a velocity-based adaptive tracklet management (VATM) module that adjusts the tracking interval dynamically based on object motion. Extensive experiments on the V2X-Real and OPV2V datasets show that our approach significantly outperforms existing state-of-the-art methods in both detection and tracking accuracy.
- Abstract(参考訳): 協調的知覚は、知覚範囲を拡大し、主に協調的な3D検出と追跡タスクを含むセンサー障害に対する堅牢性を向上させることで、環境理解を高める上で重要な役割を担っている。
前者は個々のフレームでのオブジェクト認識に焦点を当て、後者は時間の経過とともに連続的なインスタンストラックレットをキャプチャする。
しかし、両分野の既存の研究は、主に車両のスーパークラスに焦点を当てており、多クラス共同検出と追跡の両方に効果的な解決策が欠如している。
この制限は、様々な外観と動きパターンを持つ多様なオブジェクトクラスを含む現実世界のシナリオにおける適用性を妨げます。
これらの制約を克服するために,多様な道路利用者に適した多クラス協調検出・追跡フレームワークを提案する。
まず,大域的空間注意融合(GSAF)モジュールを用いた検出器を提案する。
次に、視覚基盤モデルを用いた視覚的セマンティクスを活用して、歩行者のような小さな物体と誤マッチした場合に、IDSW(ID SWitch)エラーを効果的に低減するトラックレット再識別(REID)モジュールを提案する。
さらに、物体の動きに基づいて追従間隔を動的に調整するベロシティベースの適応トラックレット管理(VATM)モジュールを設計する。
V2X-RealデータセットとOPV2Vデータセットの大規模な実験により、我々のアプローチは検出と追跡の精度の両方において既存の最先端手法を著しく上回っていることが示された。
関連論文リスト
- CAMELTrack: Context-Aware Multi-cue ExpLoitation for Online Multi-Object Tracking [68.24998698508344]
CAMELはコンテキスト対応型マルチキューExpLoitationのための新しいアソシエイトモジュールである。
エンド・ツー・エンドの検知・バイ・トラック方式とは異なり,本手法は軽量かつ高速にトレーニングが可能であり,外部のオフ・ザ・シェルフモデルを活用することができる。
提案するオンライントラッキングパイプラインであるCAMELTrackは,複数のトラッキングベンチマークで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2025-05-02T13:26:23Z) - SM3Det: A Unified Model for Multi-Modal Remote Sensing Object Detection [73.49799596304418]
本稿では,リモートセンシングのためのマルチモーダルデータセットとマルチタスクオブジェクト検出(M2Det)という新しいタスクを提案する。
水平方向または指向方向の物体を、あらゆるセンサーから正確に検出するように設計されている。
この課題は、1)マルチモーダルモデリングの管理に関わるトレードオフ、2)マルチタスク最適化の複雑さに起因する。
論文 参考訳(メタデータ) (2024-12-30T02:47:51Z) - Unified Domain Generalization and Adaptation for Multi-View 3D Object Detection [14.837853049121687]
マルチビューカメラを利用した3次元物体検出は, 視覚課題における実用的, 経済的価値を実証した。
典型的な教師付き学習アプローチは、目に見えない、ラベルなしのターゲットデータセットに対する満足な適応を達成する上で、課題に直面します。
本稿では、これらの欠点を軽減するための実践的なソリューションとして、統一ドメイン一般化・適応(UDGA)を提案する。
論文 参考訳(メタデータ) (2024-10-29T18:51:49Z) - Cross-Cluster Shifting for Efficient and Effective 3D Object Detection
in Autonomous Driving [69.20604395205248]
本稿では,自律運転における3次元物体検出のための3次元点検出モデルであるShift-SSDを提案する。
我々は、ポイントベース検出器の表現能力を解き放つために、興味深いクロスクラスタシフト操作を導入する。
我々は、KITTI、ランタイム、nuScenesデータセットに関する広範な実験を行い、Shift-SSDの最先端性能を実証した。
論文 参考訳(メタデータ) (2024-03-10T10:36:32Z) - Single-Shot and Multi-Shot Feature Learning for Multi-Object Tracking [55.13878429987136]
そこで本研究では,異なる目標に対して,単発と複数発の特徴を共同で学習するための,シンプルで効果的な2段階特徴学習パラダイムを提案する。
提案手法は,DanceTrackデータセットの最先端性能を達成しつつ,MOT17およびMOT20データセットの大幅な改善を実現している。
論文 参考訳(メタデータ) (2023-11-17T08:17:49Z) - Occlusion-Aware Detection and Re-ID Calibrated Network for Multi-Object
Tracking [38.36872739816151]
検出器内のOAA(Occlusion-Aware Attention)モジュールは、隠蔽された背景領域を抑えながらオブジェクトの特徴を強調する。
OAAは、隠蔽される可能性のある物体の検出器を強化する変調器として機能する。
最適輸送問題に基づくRe-ID埋め込みマッチングブロックを設計する。
論文 参考訳(メタデータ) (2023-08-30T06:56:53Z) - Multi-Camera Multi-Object Tracking on the Move via Single-Stage Global
Association Approach [23.960847268459293]
この研究は、複数カメラから1つ以上の検出を追跡対象に関連付けるための、新しいシングルステージグローバルアソシエーション追跡手法を導入する。
また,本モデルでは,nuScenes検出課題において,標準的な視覚に基づく3次元物体検出器の検出精度も向上した。
論文 参考訳(メタデータ) (2022-11-17T17:03:24Z) - InterTrack: Interaction Transformer for 3D Multi-Object Tracking [9.283656931246645]
3Dマルチオブジェクトトラッキング(MOT)は、自動運転車にとって重要な問題である。
提案手法であるInterTrackは,データアソシエーションのための識別対象表現を生成する。
我々はnuScenes 3D MOTベンチマークのアプローチを検証する。
論文 参考訳(メタデータ) (2022-08-17T03:24:36Z) - Activation to Saliency: Forming High-Quality Labels for Unsupervised
Salient Object Detection [54.92703325989853]
本稿では,高品質なサリエンシキューを効果的に生成する2段階アクティベーション・ツー・サリエンシ(A2S)フレームワークを提案する。
トレーニングプロセス全体において、私たちのフレームワークにヒューマンアノテーションは関与していません。
本フレームワークは,既存のUSOD法と比較して高い性能を示した。
論文 参考訳(メタデータ) (2021-12-07T11:54:06Z) - Multi-object Tracking with a Hierarchical Single-branch Network [31.680667324595557]
階層的な単一ブランチネットワークに基づくオンライン多目的追跡フレームワークを提案する。
新たなiHOIM損失関数は,2つのサブタスクの目的を統一し,より優れた検出性能を実現する。
MOT16とMOT20データセットの実験結果から,最先端のトラッキング性能が達成できた。
論文 参考訳(メタデータ) (2021-01-06T12:14:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。