Generating Reliable Synthetic Clinical Trial Data: The Role of Hyperparameter Optimization and Domain Constraints
- URL: http://arxiv.org/abs/2505.05019v1
- Date: Thu, 08 May 2025 07:51:36 GMT
- Title: Generating Reliable Synthetic Clinical Trial Data: The Role of Hyperparameter Optimization and Domain Constraints
- Authors: Waldemar Hahn, Jan-Niklas Eckardt, Christoph Röllig, Martin Sedlmayr, Jan Moritz Middeke, Markus Wolfien,
- Abstract summary: This study systematically evaluates four HPO strategies across eight generative models.<n>Our results demonstrate that HPO consistently improves synthetic data quality, with TVAE, CTGAN, and CTAB-GAN+ achieving improvements of up to 60%, 39%, and 38%, respectively.<n>HPO alone is insufficient to ensure clinically valid synthetic data, as all models exhibited violations of fundamental survival constraints.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The generation of synthetic clinical trial data offers a promising approach to mitigating privacy concerns and data accessibility limitations in medical research. However, ensuring that synthetic datasets maintain high fidelity, utility, and adherence to domain-specific constraints remains a key challenge. While hyperparameter optimization (HPO) has been shown to improve generative model performance, the effectiveness of different optimization strategies for synthetic clinical data remains unclear. This study systematically evaluates four HPO strategies across eight generative models, comparing single-metric optimization against compound metric optimization approaches. Our results demonstrate that HPO consistently improves synthetic data quality, with TVAE, CTGAN, and CTAB-GAN+ achieving improvements of up to 60%, 39%, and 38%, respectively. Compound metric optimization outperformed single-metric strategies, producing more balanced and generalizable synthetic datasets. Interestingly, HPO alone is insufficient to ensure clinically valid synthetic data, as all models exhibited violations of fundamental survival constraints. Preprocessing and postprocessing played a crucial role in reducing these violations, as models lacking robust processing steps produced invalid data in up to 61% of cases. These findings underscore the necessity of integrating explicit domain knowledge alongside HPO to create high quality synthetic datasets. Our study provides actionable recommendations for improving synthetic data generation, with future research needed to refine metric selection and validate these findings on larger datasets to enhance clinical applicability.
Related papers
- How Good Are Synthetic Requirements ? Evaluating LLM-Generated Datasets for AI4RE [0.5156484100374059]
This paper presents an enhanced Product Line approach for generating synthetic requirements data.<n>We investigate four research questions assessing how prompting strategies, automated prompt optimization, and post-generation curation affect data quality.<n>Our results show that synthetic requirements can match or outperform human-authored ones for specific tasks.
arXiv Detail & Related papers (2025-06-26T10:52:07Z) - Dynamic Noise Preference Optimization for LLM Self-Improvement via Synthetic Data [51.62162460809116]
We introduce Dynamic Noise Preference Optimization (DNPO) to ensure consistent improvements across iterations.<n>In experiments with Zephyr-7B, DNPO consistently outperforms existing methods, showing an average performance boost of 2.6%.<n> DNPO shows a significant improvement in model-generated data quality, with a 29.4% win-loss rate gap compared to the baseline in GPT-4 evaluations.
arXiv Detail & Related papers (2025-02-08T01:20:09Z) - Automatic Prompt Optimization Techniques: Exploring the Potential for Synthetic Data Generation [0.0]
In specialized domains such as healthcare, data acquisition faces significant constraints due to privacy regulations, ethical considerations, and limited availability.<n>The emergence of large-scale prompt-based models presents new opportunities for synthetic data generation without direct access to protected data.<n>We review recent developments in automatic prompt optimization, following PRISMA guidelines.
arXiv Detail & Related papers (2025-02-05T11:13:03Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
The success of AI models relies on the availability of large, diverse, and high-quality datasets.
Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns.
arXiv Detail & Related papers (2024-04-11T06:34:17Z) - On the Equivalency, Substitutability, and Flexibility of Synthetic Data [9.459709213597707]
We investigate the equivalency of synthetic data to real-world data, the substitutability of synthetic data for real data, and the flexibility of synthetic data generators.
Our results suggest that synthetic data not only enhances model performance but also demonstrates substitutability for real data, with 60% to 80% replacement without performance loss.
arXiv Detail & Related papers (2024-03-24T17:21:32Z) - TarGEN: Targeted Data Generation with Large Language Models [51.87504111286201]
TarGEN is a multi-step prompting strategy for generating high-quality synthetic datasets.
We augment TarGEN with a method known as self-correction empowering LLMs to rectify inaccurately labeled instances.
A comprehensive analysis of the synthetic dataset compared to the original dataset reveals similar or higher levels of dataset complexity and diversity.
arXiv Detail & Related papers (2023-10-27T03:32:17Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - Differentially Private Data Generation with Missing Data [25.242190235853595]
We formalize the problems of differential privacy (DP) synthetic data with missing values.
We propose three effective adaptive strategies that significantly improve the utility of the synthetic data.
Overall, this study contributes to a better understanding of the challenges and opportunities for using private synthetic data generation algorithms.
arXiv Detail & Related papers (2023-10-17T19:41:54Z) - Does Synthetic Data Make Large Language Models More Efficient? [0.0]
This paper explores the nuances of synthetic data generation in NLP.
We highlight its advantages, including data augmentation potential and the introduction of structured variety.
We demonstrate the impact of template-based synthetic data on the performance of modern transformer models.
arXiv Detail & Related papers (2023-10-11T19:16:09Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
We propose a novel scheme to Condense dataset by Aligning FEatures (CAFE)
At the heart of our approach is an effective strategy to align features from the real and synthetic data across various scales.
We validate the proposed CAFE across various datasets, and demonstrate that it generally outperforms the state of the art.
arXiv Detail & Related papers (2022-03-03T05:58:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.