論文の概要: LAPSO: A Unified Optimization View for Learning-Augmented Power System Operations
- arxiv url: http://arxiv.org/abs/2505.05203v1
- Date: Thu, 08 May 2025 13:00:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-09 21:43:49.885154
- Title: LAPSO: A Unified Optimization View for Learning-Augmented Power System Operations
- Title(参考訳): LAPSO:学習強化電力系統運用のための統一最適化
- Authors: Wangkun Xu, Zhongda Chu, Fei Teng,
- Abstract要約: 本稿では,LAPSO(Learning-Augmented Power System Operations)の総合的枠組みを提案する。
LAPSOは運用段階を中心におり、時間的にサイロ化された電力系統のタスクの境界線を断ち切ることを目的としている。
学習可能なコンポーネントで既存のパワーシステム最適化モデルを自動的に拡張するために、専用のPythonパッケージ-lapsoが導入された。
- 参考スコア(独自算出の注目度): 3.754570687412345
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the high penetration of renewables, traditional model-based power system operation is challenged to deliver economic, stable, and robust decisions. Machine learning has emerged as a powerful modeling tool for capturing complex dynamics to address these challenges. However, its separate design often lacks systematic integration with existing methods. To fill the gap, this paper proposes a holistic framework of Learning-Augmented Power System Operations (LAPSO, pronounced as Lap-So). Adopting a native optimization perspective, LAPSO is centered on the operation stage and aims to break the boundary between temporally siloed power system tasks, such as forecast, operation and control, while unifying the objectives of machine learning and model-based optimizations at both training and inference stages. Systematic analysis and simulations demonstrate the effectiveness of applying LAPSO in designing new integrated algorithms, such as stability-constrained optimization (SCO) and objective-based forecasting (OBF), while enabling end-to-end tracing of different sources of uncertainties. In addition, a dedicated Python package-lapso is introduced to automatically augment existing power system optimization models with learnable components. All code and data are available at https://github.com/xuwkk/lapso_exp.
- Abstract(参考訳): 再生可能エネルギーの普及に伴い、従来のモデルベースの電力系統の運用は、経済的、安定的、堅牢な決定を下すことが課題である。
機械学習は、これらの課題に対処するために複雑なダイナミクスをキャプチャするための強力なモデリングツールとして登場した。
しかし、その独立した設計は、しばしば既存のメソッドとの体系的な統合を欠いている。
本稿では,このギャップを埋めるため,ラーニング拡張電力系統運用(LAPSO,Lap-So)の全体的枠組みを提案する。
ネイティブ最適化の観点を採用することで、LAPSOは運用段階を中心に、予測、操作、制御といった時間的にサイロ化されたパワーシステムタスクの境界を破り、トレーニングと推論の段階で機械学習とモデルベースの最適化の目的を統一することを目指している。
システム解析とシミュレーションは、安定性制約付き最適化(SCO)や目的ベース予測(OBF)のような新しい統合アルゴリズムの設計において、LAPSOを適用することの有効性を示し、異なる不確実性のソースのエンドツーエンドトレースを可能にする。
さらに、学習可能なコンポーネントで既存のパワーシステム最適化モデルを自動的に拡張するために、専用のPythonパッケージ-lapsoが導入された。
すべてのコードとデータはhttps://github.com/xuwkk/lapso_expで公開されている。
関連論文リスト
- A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
大規模Mixture of Experts(MoE)モデルは、条件計算によるモデル容量と計算効率の向上を提供する。
これらのモデル上で推論をデプロイし実行することは、計算資源、レイテンシ、エネルギー効率において大きな課題を示す。
本調査では,システムスタック全体にわたるMoEモデルの最適化手法について分析する。
論文 参考訳(メタデータ) (2024-12-18T14:11:15Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Self-Supervised Learning for Large-Scale Preventive Security Constrained DC Optimal Power Flow [20.078717680640214]
SCOPF(Security-Constrained Optimal Power Flow)は、電力グリッドの安定性において重要な役割を果たすが、システムが成長するにつれてますます複雑になる。
本稿では,大規模SCOPF問題に対する準最適解を生成するための,自己教師付きエンドツーエンドのPDL-SCOPFについて紹介する。
論文 参考訳(メタデータ) (2023-11-29T20:36:35Z) - Orchestration of Emulator Assisted Mobile Edge Tuning for AI Foundation
Models: A Multi-Agent Deep Reinforcement Learning Approach [10.47302625959368]
我々は,モバイルエッジコンピューティングと基礎モデルを統合した画期的なパラダイムを提示する。
私たちのアプローチの中心はイノベーティブなEmulator-Adapterアーキテクチャであり、基礎モデルを2つの凝集モジュールに分割する。
本稿では,分散環境におけるEmulator-Adapter構造のニーズに合わせて微調整された高度なリソース割り当て機構を提案する。
論文 参考訳(メタデータ) (2023-10-26T15:47:51Z) - OptScaler: A Collaborative Framework for Robust Autoscaling in the Cloud [10.97507717758812]
最適化モジュールを通じてプロアクティブおよびリアクティブモジュールを統合する,協調的な自動スケーリングフレームワークであるOpsScalerを提案する。
数値計算の結果,ワークロード予測モデルと協調フレームワークの優位性が示された。
論文 参考訳(メタデータ) (2023-10-26T04:38:48Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z) - Reinforcement Learning Control of Robotic Knee with Human in the Loop by
Flexible Policy Iteration [17.365135977882215]
本研究は,ポリシーアルゴリズムに革新的な特徴を導入することで,重要な空白を埋める。
本稿では,近似値関数の収束,解の最適性,システムの安定性などのシステムレベルの性能を示す。
論文 参考訳(メタデータ) (2020-06-16T09:09:48Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
本稿では,情報理論的MPCとエントロピー正規化RLとの新たな理論的関連性を示す。
バイアスモデルを利用したQ-ラーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2019-12-31T00:29:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。