Software Development Life Cycle Perspective: A Survey of Benchmarks for Code Large Language Models and Agents
- URL: http://arxiv.org/abs/2505.05283v2
- Date: Fri, 09 May 2025 03:39:37 GMT
- Title: Software Development Life Cycle Perspective: A Survey of Benchmarks for Code Large Language Models and Agents
- Authors: Kaixin Wang, Tianlin Li, Xiaoyu Zhang, Chong Wang, Weisong Sun, Yang Liu, Bin Shi,
- Abstract summary: Code large language models (CodeLLMs) and agents have shown great promise in tackling complex software engineering tasks.<n>This paper provides a comprehensive review of existing benchmarks for CodeLLMs and agents, studying and analyzing 181 benchmarks from 461 relevant papers.
- Score: 23.476042888072293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Code large language models (CodeLLMs) and agents have shown great promise in tackling complex software engineering tasks.Compared to traditional software engineering methods, CodeLLMs and agents offer stronger abilities, and can flexibly process inputs and outputs in both natural and code. Benchmarking plays a crucial role in evaluating the capabilities of CodeLLMs and agents, guiding their development and deployment. However, despite their growing significance, there remains a lack of comprehensive reviews of benchmarks for CodeLLMs and agents. To bridge this gap, this paper provides a comprehensive review of existing benchmarks for CodeLLMs and agents, studying and analyzing 181 benchmarks from 461 relevant papers, covering the different phases of the software development life cycle (SDLC). Our findings reveal a notable imbalance in the coverage of current benchmarks, with approximately 60% focused on the software development phase in SDLC, while requirements engineering and software design phases receive minimal attention at only 5% and 3%, respectively. Additionally, Python emerges as the dominant programming language across the reviewed benchmarks. Finally, this paper highlights the challenges of current research and proposes future directions, aiming to narrow the gap between the theoretical capabilities of CodeLLMs and agents and their application in real-world scenarios.
Related papers
- MERA Code: A Unified Framework for Evaluating Code Generation Across Tasks [56.34018316319873]
We propose MERA Code, a benchmark for evaluating code for the latest code generation LLMs in Russian.<n>This benchmark includes 11 evaluation tasks that span 8 programming languages.<n>We evaluate open LLMs and frontier API models, analyzing their limitations in terms of practical coding tasks in non-English languages.
arXiv Detail & Related papers (2025-07-16T14:31:33Z) - AGENTIF: Benchmarking Instruction Following of Large Language Models in Agentic Scenarios [51.46347732659174]
Large Language Models (LLMs) have demonstrated advanced capabilities in real-world agentic applications.<n>AgentIF is the first benchmark for systematically evaluating LLM instruction following ability in agentic scenarios.
arXiv Detail & Related papers (2025-05-22T17:31:10Z) - Assessing and Advancing Benchmarks for Evaluating Large Language Models in Software Engineering Tasks [13.736881548660422]
Large language models (LLMs) are gaining increasing popularity in software engineering (SE)<n> evaluating their effectiveness is crucial for understanding their potential in this field.<n>This paper offers a thorough review of 291 benchmarks, addressing three main aspects: what benchmarks are available, how benchmarks are constructed, and the future outlook for these benchmarks.
arXiv Detail & Related papers (2025-05-13T18:45:10Z) - BinMetric: A Comprehensive Binary Analysis Benchmark for Large Language Models [50.17907898478795]
We introduce BinMetric, a benchmark designed to evaluate the performance of large language models on binary analysis tasks.<n>BinMetric comprises 1,000 questions derived from 20 real-world open-source projects across 6 practical binary analysis tasks.<n>Our empirical study on this benchmark investigates the binary analysis capabilities of various state-of-the-art LLMs, revealing their strengths and limitations in this field.
arXiv Detail & Related papers (2025-05-12T08:54:07Z) - CoCo-Bench: A Comprehensive Code Benchmark For Multi-task Large Language Model Evaluation [19.071855537400463]
Large language models (LLMs) play a crucial role in software engineering, excelling in tasks like code generation and maintenance.<n>CoCo-Bench is designed to evaluate LLMs across four critical dimensions: code understanding, code generation, code modification, and code review.
arXiv Detail & Related papers (2025-04-29T11:57:23Z) - CodeIF: Benchmarking the Instruction-Following Capabilities of Large Language Models for Code Generation [24.090719826360342]
We introduce CodeIF, the first benchmark designed to assess the abilities of Large Language Models (LLMs) to adhere to task-oriented instructions within code generation scenarios.<n>We conduct extensive experiments with LLMs, analyzing their strengths and limitations in meeting the demands of these tasks.
arXiv Detail & Related papers (2025-02-26T14:19:49Z) - Language Models for Code Optimization: Survey, Challenges and Future Directions [7.928856221466083]
Language models (LMs) built upon deep neural networks (DNNs) have recently demonstrated breakthrough effectiveness in software engineering tasks.<n>This study aims to provide actionable insights and references for both researchers and practitioners in this rapidly evolving field.
arXiv Detail & Related papers (2025-01-02T14:20:36Z) - A Preliminary Study of Multilingual Code Language Models for Code Generation Task Using Translated Benchmarks [0.0]
We evaluate the performance of Poly-Coder, a pioneering open-source, multilingual CLM built for code generation.
Our results suggest that the outcomes observed in these translated benchmarks align well with evaluation metrics used during the training phase.
These initial insights highlight the need for more comprehensive empirical studies.
arXiv Detail & Related papers (2024-11-23T06:40:47Z) - Codev-Bench: How Do LLMs Understand Developer-Centric Code Completion? [60.84912551069379]
We present the Code-Development Benchmark (Codev-Bench), a fine-grained, real-world, repository-level, and developer-centric evaluation framework.
Codev-Agent is an agent-based system that automates repository crawling, constructs execution environments, extracts dynamic calling chains from existing unit tests, and generates new test samples to avoid data leakage.
arXiv Detail & Related papers (2024-10-02T09:11:10Z) - CoderUJB: An Executable and Unified Java Benchmark for Practical Programming Scenarios [25.085449990951034]
We introduce CoderUJB, a new benchmark designed to evaluate large language models (LLMs) across diverse Java programming tasks.
Our empirical study on this benchmark investigates the coding abilities of various open-source and closed-source LLMs.
The findings indicate that while LLMs exhibit strong potential, challenges remain, particularly in non-functional code generation.
arXiv Detail & Related papers (2024-03-28T10:19:18Z) - SOEN-101: Code Generation by Emulating Software Process Models Using Large Language Model Agents [50.82665351100067]
FlowGen is a code generation framework that emulates software process models based on multiple Large Language Model (LLM) agents.
We evaluate FlowGenScrum on four benchmarks: HumanEval, HumanEval-ET, MBPP, and MBPP-ET.
arXiv Detail & Related papers (2024-03-23T14:04:48Z) - Prompting Large Language Models to Tackle the Full Software Development Lifecycle: A Case Study [72.24266814625685]
We explore the performance of large language models (LLMs) across the entire software development lifecycle with DevEval.<n>DevEval features four programming languages, multiple domains, high-quality data collection, and carefully designed and verified metrics for each task.<n> Empirical studies show that current LLMs, including GPT-4, fail to solve the challenges presented within DevEval.
arXiv Detail & Related papers (2024-03-13T15:13:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.