Hearing and Seeing Through CLIP: A Framework for Self-Supervised Sound Source Localization
- URL: http://arxiv.org/abs/2505.05343v1
- Date: Thu, 08 May 2025 15:32:04 GMT
- Title: Hearing and Seeing Through CLIP: A Framework for Self-Supervised Sound Source Localization
- Authors: Sooyoung Park, Arda Senocak, Joon Son Chung,
- Abstract summary: We introduce a framework that maps audios into tokens compatible with CLIP's text encoder, producing audio-driven embeddings.<n>These embeddings are used to generate sounding region masks, from which visual features are extracted and aligned with the audio embeddings.<n>Our findings show that alignment knowledge of pre-trained multimodal foundation model enables our method to generate more complete and compact localization for sounding objects.
- Score: 17.234696376137677
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large-scale vision-language models demonstrate strong multimodal alignment and generalization across diverse tasks. Among them, CLIP stands out as one of the most successful approaches. In this work, we extend the application of CLIP to sound source localization, proposing a self-supervised method operates without explicit text input. We introduce a framework that maps audios into tokens compatible with CLIP's text encoder, producing audio-driven embeddings. These embeddings are used to generate sounding region masks, from which visual features are extracted and aligned with the audio embeddings through a contrastive audio-visual correspondence objective. Our findings show that alignment knowledge of pre-trained multimodal foundation model enables our method to generate more complete and compact localization for sounding objects. We further propose an LLM-guided extension that distills object-aware audio-visual scene understanding into the model during training to enhance alignment. Extensive experiments across five diverse tasks demonstrate that our method, in all variants, outperforms state-of-the-art approaches and achieves strong generalization in zero-shot settings.
Related papers
- Bridging Audio and Vision: Zero-Shot Audiovisual Segmentation by Connecting Pretrained Models [13.63552417613795]
We propose a novel zero-shot AVS framework that eliminates task-specific training by leveraging multiple pretrained models.<n>Our approach integrates audio, vision, and text representations to bridge modality gaps, enabling precise sound source segmentation without AVS-specific annotations.
arXiv Detail & Related papers (2025-06-06T21:06:35Z) - CAV-MAE Sync: Improving Contrastive Audio-Visual Mask Autoencoders via Fine-Grained Alignment [76.32508013503653]
We propose CAV-MAE Sync as a simple yet effective extension of the original CAV-MAE framework for self-supervised audio-visual learning.<n>We tackle the mismatch between modalities by treating audio as a temporal sequence aligned with video frames, rather than using global representations.<n>We improve spatial localization by introducing learnable register tokens that reduce semantic load on patch tokens.
arXiv Detail & Related papers (2025-05-02T12:59:58Z) - CLIP-VAD: Exploiting Vision-Language Models for Voice Activity Detection [2.110168344647122]
Voice Activity Detection (VAD) is the process of automatically determining whether a person is speaking and identifying the timing of their speech.
We introduce a novel approach leveraging Contrastive Language-Image Pretraining (CLIP) models.
Our approach outperforms several audio-visual methods despite its simplicity, and without requiring pre-training on extensive audio-visual datasets.
arXiv Detail & Related papers (2024-10-18T14:43:34Z) - Meerkat: Audio-Visual Large Language Model for Grounding in Space and Time [73.7845280328535]
We present Meerkat, an audio-visual LLM equipped with a fine-grained understanding of image and audio.
Meerkat can tackle challenging tasks such as audio referred image grounding, image guided audio temporal localization, and audio-visual fact-checking.
We achieve state-of-the-art performance on all these downstream tasks with a relative improvement of up to 37.12%.
arXiv Detail & Related papers (2024-07-01T23:32:25Z) - Audio-Visual Generalized Zero-Shot Learning using Pre-Trained Large Multi-Modal Models [53.48409081555687]
In this work, we explore such large pre-trained models to obtain features, i.e. CLIP for visual features, and CLAP for audio features.
We propose a simple yet effective model that only relies on feed-forward neural networks.
Our framework achieves state-of-the-art performance on VGGSound-GZSL, UCF-GZSL, and ActivityNet-GZSL.
arXiv Detail & Related papers (2024-04-09T13:39:37Z) - T-VSL: Text-Guided Visual Sound Source Localization in Mixtures [33.28678401737415]
We develop a framework to disentangle audio-visual source correspondence from multi-source mixtures.
Our framework exhibits promising zero-shot transferability to unseen classes during test time.
Experiments conducted on the MUSIC, VGGSound, and VGGSound-Instruments datasets demonstrate significant performance improvements over state-of-the-art methods.
arXiv Detail & Related papers (2024-04-02T09:07:05Z) - Multi-modal Instruction Tuned LLMs with Fine-grained Visual Perception [63.03288425612792]
We propose bfAnyRef, a general MLLM model that can generate pixel-wise object perceptions and natural language descriptions from multi-modality references.
Our model achieves state-of-the-art results across multiple benchmarks, including diverse modality referring segmentation and region-level referring expression generation.
arXiv Detail & Related papers (2024-03-05T13:45:46Z) - UMG-CLIP: A Unified Multi-Granularity Vision Generalist for Open-World Understanding [90.74967596080982]
This paper extends Contrastive Language-Image Pre-training (CLIP) with multi-granularity alignment.
We develop a Unified Multi-Granularity learning framework, termed UMG-CLIP, which simultaneously empowers the model with versatile perception abilities.
With parameter efficient tuning, UMG-CLIP surpasses current widely used CLIP variants and achieves state-of-the-art performance on diverse image understanding benchmarks.
arXiv Detail & Related papers (2024-01-12T06:35:09Z) - Can CLIP Help Sound Source Localization? [19.370071553914954]
We introduce a framework that translates audio signals into tokens compatible with CLIP's text encoder.
By directly using these embeddings, our method generates audio-grounded masks for the provided audio.
Our findings suggest that utilizing pre-trained image-text models enable our model to generate more complete and compact localization maps for the sounding objects.
arXiv Detail & Related papers (2023-11-07T15:26:57Z) - Prompting Segmentation with Sound Is Generalizable Audio-Visual Source
Localizer [22.846623384472377]
We introduce the encoder-prompt-decoder paradigm to decode localization from the fused audio-visual feature.
Specifically, we first propose to construct Semantic-aware Audio Prompt (SAP) to help the visual foundation model focus on sounding objects.
We develop a Correlation Adapter (ColA) to keep minimal training efforts as well as maintain adequate knowledge of the visual foundation model.
arXiv Detail & Related papers (2023-09-13T05:43:35Z) - VATLM: Visual-Audio-Text Pre-Training with Unified Masked Prediction for
Speech Representation Learning [119.49605266839053]
We propose a unified cross-modal representation learning framework VATLM (Visual-Audio-Text Language Model)
The proposed VATLM employs a unified backbone network to model the modality-independent information.
In order to integrate these three modalities into one shared semantic space, VATLM is optimized with a masked prediction task of unified tokens.
arXiv Detail & Related papers (2022-11-21T09:10:10Z) - Contrastive Learning of Global and Local Audio-Visual Representations [25.557229705149577]
We propose a versatile self-supervised approach to learn audio-visual representations that generalizes to tasks that require global semantic information.
We show that our approach learns generalizable video representations on various downstream scenarios including action/sound classification, lip reading, deepfake detection, and sound source localization.
arXiv Detail & Related papers (2021-04-07T07:35:08Z) - Self-Supervised Learning of Audio-Visual Objects from Video [108.77341357556668]
We introduce a model that uses attention to localize and group sound sources, and optical flow to aggregate information over time.
We demonstrate the effectiveness of the audio-visual object embeddings that our model learns by using them for four downstream speech-oriented tasks.
arXiv Detail & Related papers (2020-08-10T16:18:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.