CART-ELC: Oblique Decision Tree Induction via Exhaustive Search
- URL: http://arxiv.org/abs/2505.05402v1
- Date: Thu, 08 May 2025 16:42:13 GMT
- Title: CART-ELC: Oblique Decision Tree Induction via Exhaustive Search
- Authors: Andrew D. Laack,
- Abstract summary: Methods that rely on exhaustive search to find oblique splits face computational challenges.<n>We introduce a novel algorithm, Classification and Regression Tree - Exhaustive Linear Combinations (CART-ELC), for inducing oblique decision trees.<n>Our results demonstrate that CART-ELC consistently achieves competitive performance on small datasets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Oblique decision trees have attracted attention due to their potential for improved classification performance over traditional axis-aligned decision trees. However, methods that rely on exhaustive search to find oblique splits face computational challenges. As a result, they have not been widely explored. We introduce a novel algorithm, Classification and Regression Tree - Exhaustive Linear Combinations (CART-ELC), for inducing oblique decision trees that performs an exhaustive search on a restricted set of hyperplanes. We then investigate the algorithm's computational complexity and its predictive capabilities. Our results demonstrate that CART-ELC consistently achieves competitive performance on small datasets, often yielding statistically significant improvements in classification accuracy relative to existing decision tree induction algorithms, while frequently producing shallower, simpler, and thus more interpretable trees.
Related papers
- Optimal Decision Tree Pruning Revisited: Algorithms and Complexity [22.57063332430197]
We focus on fundamental pruning operations of subtree replacement and raising.<n>While optimal pruning can be performed in time for subtree replacement, the problem is NP-complete for subtree raising.<n>For example, while subtree raising is hard for small domain size, it can be solved in $D2d cdot |I|O(1)$ time, where $|I|$ is the input size.
arXiv Detail & Related papers (2025-03-05T15:02:46Z) - LiteSearch: Efficacious Tree Search for LLM [70.29796112457662]
This study introduces a novel guided tree search algorithm with dynamic node selection and node-level exploration budget.
Experiments conducted on the GSM8K and TabMWP datasets demonstrate that our approach enjoys significantly lower computational costs compared to baseline methods.
arXiv Detail & Related papers (2024-06-29T05:14:04Z) - Learning accurate and interpretable tree-based models [27.203303726977616]
We develop approaches to design tree-based learning algorithms given repeated access to data from the same domain.<n>We propose novel parameterized classes of node splitting criteria in top-down algorithms, which interpolate between popularly used entropy and Gini impurity based criteria.<n>We extend our results to tuning popular tree-based ensembles, including random forests and gradient-boosted trees.
arXiv Detail & Related papers (2024-05-24T20:10:10Z) - Online Learning of Decision Trees with Thompson Sampling [12.403737756721467]
Decision Trees are prominent prediction models for interpretable Machine Learning.
We devise a new Monte Carlo Tree Search algorithm, able to produce optimal Decision Trees in an online setting.
arXiv Detail & Related papers (2024-04-09T15:53:02Z) - Learning a Decision Tree Algorithm with Transformers [75.96920867382859]
We introduce MetaTree, a transformer-based model trained via meta-learning to directly produce strong decision trees.
We fit both greedy decision trees and globally optimized decision trees on a large number of datasets, and train MetaTree to produce only the trees that achieve strong generalization performance.
arXiv Detail & Related papers (2024-02-06T07:40:53Z) - Regularized impurity reduction: Accurate decision trees with complexity
guarantees [20.170305081348328]
We propose a tree-induction algorithm that gives a logarithmic approximation guarantee on the tree complexity.
The enhanced algorithms strike an excellent balance between predictive accuracy and tree complexity.
arXiv Detail & Related papers (2022-08-23T13:15:19Z) - Optimal randomized classification trees [0.0]
Classification and Regression Trees (CARTs) are off-the-shelf techniques in modern Statistics and Machine Learning.
CARTs are built by means of a greedy procedure, sequentially deciding the splitting predictor variable(s) and the associated threshold.
This greedy approach trains trees very fast, but, by its nature, their classification accuracy may not be competitive against other state-of-the-art procedures.
arXiv Detail & Related papers (2021-10-19T11:41:12Z) - Convex Polytope Trees [57.56078843831244]
convex polytope trees (CPT) are proposed to expand the family of decision trees by an interpretable generalization of their decision boundary.
We develop a greedy method to efficiently construct CPT and scalable end-to-end training algorithms for the tree parameters when the tree structure is given.
arXiv Detail & Related papers (2020-10-21T19:38:57Z) - Efficient Computation of Expectations under Spanning Tree Distributions [67.71280539312536]
We propose unified algorithms for the important cases of first-order expectations and second-order expectations in edge-factored, non-projective spanning-tree models.
Our algorithms exploit a fundamental connection between gradients and expectations, which allows us to derive efficient algorithms.
arXiv Detail & Related papers (2020-08-29T14:58:26Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
We present a novel algorithm for learning optimal classification trees based on dynamic programming and search.
Our approach uses only a fraction of the time required by the state-of-the-art and can handle datasets with tens of thousands of instances.
arXiv Detail & Related papers (2020-07-24T17:06:55Z) - Generalized and Scalable Optimal Sparse Decision Trees [56.35541305670828]
We present techniques that produce optimal decision trees over a variety of objectives.
We also introduce a scalable algorithm that produces provably optimal results in the presence of continuous variables.
arXiv Detail & Related papers (2020-06-15T19:00:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.