Representing spherical tensors with scalar-based machine-learning models
- URL: http://arxiv.org/abs/2505.05404v1
- Date: Thu, 08 May 2025 16:45:28 GMT
- Title: Representing spherical tensors with scalar-based machine-learning models
- Authors: Michelangelo Domina, Filippo Bigi, Paolo Pegolo, Michele Ceriotti,
- Abstract summary: equivariant models of 3D point clouds are able to approximate structure-property relations in a way that is fully consistent with the structure of the rotation group.<n>The symmetry constraints make this approach computationally demanding and cumbersome to implement.<n>We propose approximations of the general expressions that, while lacking universal approximation properties, are fast, simple to implement, and accurate in practical settings.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rotational symmetry plays a central role in physics, providing an elegant framework to describe how the properties of 3D objects -- from atoms to the macroscopic scale -- transform under the action of rigid rotations. Equivariant models of 3D point clouds are able to approximate structure-property relations in a way that is fully consistent with the structure of the rotation group, by combining intermediate representations that are themselves spherical tensors. The symmetry constraints however make this approach computationally demanding and cumbersome to implement, which motivates increasingly popular unconstrained architectures that learn approximate symmetries as part of the training process. In this work, we explore a third route to tackle this learning problem, where equivariant functions are expressed as the product of a scalar function of the point cloud coordinates and a small basis of tensors with the appropriate symmetry. We also propose approximations of the general expressions that, while lacking universal approximation properties, are fast, simple to implement, and accurate in practical settings.
Related papers
- Generalized Linear Mode Connectivity for Transformers [87.32299363530996]
A striking phenomenon is linear mode connectivity (LMC), where independently trained models can be connected by low- or zero-loss paths.<n>Prior work has predominantly focused on neuron re-ordering through permutations, but such approaches are limited in scope.<n>We introduce a unified framework that captures four symmetry classes: permutations, semi-permutations, transformations, and general invertible maps.<n>This generalization enables, for the first time, the discovery of low- and zero-barrier linear paths between independently trained Vision Transformers and GPT-2 models.
arXiv Detail & Related papers (2025-06-28T01:46:36Z) - Attention on the Sphere [0.5431339024941462]
We introduce a generalized attention mechanism for spherical domains, enabling Transformer architectures to process data defined on the two-dimensional sphere.<n>By integrating numerical quadrature weights into the attention mechanism, we obtain a geometrically faithful spherical attention that is approximately rotationally equivariant.<n>To further enhance both scalability and model performance, we propose simulating neighborhood attention on the sphere.
arXiv Detail & Related papers (2025-05-16T11:59:30Z) - Learning Shape-Independent Transformation via Spherical Representations for Category-Level Object Pose Estimation [42.48001557547222]
Category-level object pose estimation aims to determine the pose and size of novel objects in specific categories.<n>Existing correspondence-based approaches typically adopt point-based representations to establish the correspondences between primitive observed points and normalized object coordinates.<n>We introduce a novel architecture called SpherePose, which yields precise correspondence prediction through three core designs.
arXiv Detail & Related papers (2025-03-18T05:43:42Z) - Relative Representations: Topological and Geometric Perspectives [53.88896255693922]
Relative representations are an established approach to zero-shot model stitching.<n>We introduce a normalization procedure in the relative transformation, resulting in invariance to non-isotropic rescalings and permutations.<n>Second, we propose to deploy topological densification when fine-tuning relative representations, a topological regularization loss encouraging clustering within classes.
arXiv Detail & Related papers (2024-09-17T08:09:22Z) - Current Symmetry Group Equivariant Convolution Frameworks for Representation Learning [5.802794302956837]
Euclidean deep learning is often inadequate for addressing real-world signals where the representation space is irregular and curved with complex topologies.
We focus on the importance of symmetry group equivariant deep learning models and their realization of convolution-like operations on graphs, 3D shapes, and non-Euclidean spaces.
arXiv Detail & Related papers (2024-09-11T15:07:18Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - Binding Dynamics in Rotating Features [72.80071820194273]
We propose an alternative "cosine binding" mechanism, which explicitly computes the alignment between features and adjusts weights accordingly.
This allows us to draw direct connections to self-attention and biological neural processes, and to shed light on the fundamental dynamics for object-centric representations to emerge in Rotating Features.
arXiv Detail & Related papers (2024-02-08T12:31:08Z) - A Unified Framework for Discovering Discrete Symmetries [17.687122467264487]
We consider the problem of learning a function respecting a symmetry from among a class of symmetries.
We develop a unified framework that enables symmetry discovery across a broad range of subgroups.
arXiv Detail & Related papers (2023-09-06T10:41:30Z) - Learning Symmetric Embeddings for Equivariant World Models [9.781637768189158]
We propose learning symmetric embedding networks (SENs) that encode an input space (e.g. images)
This network can be trained end-to-end with an equivariant task network to learn an explicitly symmetric representation.
Our experiments demonstrate that SENs facilitate the application of equivariant networks to data with complex symmetry representations.
arXiv Detail & Related papers (2022-04-24T22:31:52Z) - 3D Equivariant Graph Implicit Functions [51.5559264447605]
We introduce a novel family of graph implicit functions with equivariant layers that facilitates modeling fine local details.
Our method improves over the existing rotation-equivariant implicit function from 0.69 to 0.89 on the ShapeNet reconstruction task.
arXiv Detail & Related papers (2022-03-31T16:51:25Z) - Frame Averaging for Equivariant Shape Space Learning [85.42901997467754]
A natural way to incorporate symmetries in shape space learning is to ask that the mapping to the shape space (encoder) and mapping from the shape space (decoder) are equivariant to the relevant symmetries.
We present a framework for incorporating equivariance in encoders and decoders by introducing two contributions.
arXiv Detail & Related papers (2021-12-03T06:41:19Z) - NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One
Go [109.88509362837475]
We present NeuroMorph, a new neural network architecture that takes as input two 3D shapes.
NeuroMorph produces smooth and point-to-point correspondences between them.
It works well for a large variety of input shapes, including non-isometric pairs from different object categories.
arXiv Detail & Related papers (2021-06-17T12:25:44Z) - Fully Steerable 3D Spherical Neurons [14.86655504533083]
We propose a steerable feed-forward learning-based approach that consists of spherical decision surfaces and operates on point clouds.
Due to the inherent geometric 3D structure of our theory, we derive a 3D steerability constraint for its atomic parts.
We show how the model parameters are fully steerable at inference time.
arXiv Detail & Related papers (2021-06-02T16:30:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.