Non-Markovianity in collision models with initial intra-environment correlations
- URL: http://arxiv.org/abs/2505.05433v1
- Date: Thu, 08 May 2025 17:22:42 GMT
- Title: Non-Markovianity in collision models with initial intra-environment correlations
- Authors: Graeme Pleasance, Angel E. Neira, Marco Merkli, Francesco Petruccione,
- Abstract summary: Collision models (CMs) describe an open system interacting in sequence with elements of an environment.<n>In this work, we investigate how ancilla-ancilla entanglement can serve as a mechanism for controlling the non-Markovianity of an open system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Collision models (CMs) describe an open system interacting in sequence with elements of an environment, termed ancillas. They have been established as a useful tool for analyzing non-Markovian open quantum dynamics based on the ability to control the environmental memory through simple feedback mechanisms. In this work, we investigate how ancilla-ancilla entanglement can serve as a mechanism for controlling the non-Markovianity of an open system, focusing on an operational approach to generating correlations within the environment. To this end, we first demonstrate that the open dynamics of CMs with sequentially generated correlations between groups of ancillas can be mapped onto a composite CM, where the memory part of the environment is incorporated into an enlarged Markovian system. We then apply this framework to an all-qubit CM, and show that non-Markovian behavior emerges only when the next incoming pair of ancillas are entangled prior to colliding with the system. On the other hand, when system-ancilla collisions precede ancilla-ancilla entanglement, we find the open dynamics to always be Markovian. Our findings highlight how certain qualitative features of inter-ancilla correlations can strongly influence the onset of system non-Markovianity.
Related papers
- On the emergence of quantum memory in non-Markovian dynamics [41.94295877935867]
Non-Markovian dynamics (with memory) is typical in practice, with memory effects being harnessed as a resource for many tasks like quantum error correction and information processing.<n>Yet, the type of memory, classical or quantum, necessary to realize the dynamics of many collision models is not known.<n>In this work, we extend the quantum homogenizer to the non-Markovian regime by introducing intra-ancilla interactions mediated by Fredkin gates, and study the nature of its memory.
arXiv Detail & Related papers (2025-07-29T15:19:26Z) - Unveiling coherent dynamics in non-Markovian open quantum systems: exact expression and recursive perturbation expansion [44.99833362998488]
We introduce a systematic framework to derive the effective Hamiltonian governing the coherent dynamics of non-Markovian open quantum systems.<n>Applying our framework to paradigmatic spin systems, we reveal how environmental correlations influence energy shifts and eigenbasis rotations.
arXiv Detail & Related papers (2025-06-04T15:55:22Z) - Machine Learning-Enhanced Characterisation of Structured Spectral Densities: Leveraging the Reaction Coordinate Mapping [41.94295877935867]
Spectral densities encode essential information about system-environment interactions in open-quantum systems.<n>We leverage machine learning techniques to reconstruct key environmental features using the reaction coordinate mapping.<n>For a dissipative spin-boson model with a structured spectral density expressed as a sum of Lorentzian peaks, we demonstrate that the time evolution of a system observable can be used by a neural network to classify the spectral density as comprising one, two, or three Lorentzian peaks.
arXiv Detail & Related papers (2025-01-13T17:02:04Z) - Systems with Switching Causal Relations: A Meta-Causal Perspective [18.752058058199847]
flexibility of agents' actions or tipping points in the environmental process can change the qualitative dynamics of the system.<n>New causal relationships may emerge, while existing ones change or disappear, resulting in an altered causal graph.<n>We propose the concept of meta-causal states, which groups classical causal models into clusters based on equivalent qualitative behavior.
arXiv Detail & Related papers (2024-10-16T21:32:31Z) - Engineering Transport via Collisional Noise: a Toolbox for Biology
Systems [44.99833362998488]
We study a generalised XXZ model in the presence of collision noise, which allows to describe environments beyond the standard Markovian formulation.
Results constitute an example of the essential building blocks for the understanding of quantum transport in noisy and warm disordered environments.
arXiv Detail & Related papers (2023-11-15T12:55:28Z) - High-dimensional monitoring and the emergence of realism via multiple observers [41.94295877935867]
Correlation is the basic mechanism of every measurement model.<n>We introduce a model that interpolates between weak and strong non-selective measurements for qudits.
arXiv Detail & Related papers (2023-05-13T13:42:19Z) - DynGFN: Towards Bayesian Inference of Gene Regulatory Networks with
GFlowNets [81.75973217676986]
Gene regulatory networks (GRN) describe interactions between genes and their products that control gene expression and cellular function.
Existing methods either focus on challenge (1), identifying cyclic structure from dynamics, or on challenge (2) learning complex Bayesian posteriors over DAGs, but not both.
In this paper we leverage the fact that it is possible to estimate the "velocity" of gene expression with RNA velocity techniques to develop an approach that addresses both challenges.
arXiv Detail & Related papers (2023-02-08T16:36:40Z) - Initial Correlations in Open Quantum Systems: Constructing Linear
Dynamical Maps and Master Equations [62.997667081978825]
We show that, for any predetermined initial correlations, one can introduce a linear dynamical map on the space of operators of the open system.
We demonstrate that this construction leads to a linear, time-local quantum master equation with generalized Lindblad structure.
arXiv Detail & Related papers (2022-10-24T13:43:04Z) - Unveiling the Markovian to non-Markovian transition with quantum
collision models [0.0]
We study the dynamics of a qubit system in contact with a thermal bath made up of few ancillas, in which system-ancilla and ancilla-ancilla interactions are considered.
Results clearly indicate that the information backflows decrease when new ancillas are added to the bath, which sheds light on the nature of the Markovian to non-Markovian transition.
arXiv Detail & Related papers (2022-10-21T14:07:41Z) - Suppressing information storage in a structured thermal bath:
Objectivity and non-Markovianity [0.0]
Non-Markovian information can be captured by non-Markovian witnesses.
We show how such behavior suppresses the classic plateau in Partial Information Plot (PIP) from the paradigm of quantum Darwinism.
In addition to the system point of view, we show the impossibility of encoding accessible information for measurement in the environment for any model limit.
arXiv Detail & Related papers (2021-10-07T14:16:00Z) - Adapted projection operator technique for the treatment of initial
correlations [0.0]
We introduce a perturbative method that can be applied to any microscopic modeling of the system-environment interaction, including fully general initial correlations.
Our method is further illustrated by means of two cases study, for which it reproduces the expected dynamical behavior in the long-time regime more consistently than the standard projection technique.
arXiv Detail & Related papers (2021-07-28T18:01:12Z) - Unveiling non-Markovian spacetime signalling in open quantum systems
with long-range tensor network dynamics [0.0]
We use a Matrix Product State representation of the quantum state of a system and its environment to keep track of the bath explicitly.
We predict a non-Markovian dynamics where long-range couplings induce correlations into the environment.
The environment dynamics can be naturally extracted from our method and shine a light on long time feedback effects that are responsible for the observed non-Markovian recurrences in the eigen-populations of the system.
arXiv Detail & Related papers (2021-07-23T13:28:08Z) - On the connection between microscopic description and memory effects in
open quantum system dynamics [0.0]
We investigate the role played by the system-environment correlations and the environmental evolution in the flow of information.
Our analysis clarifies how the interplay between system-environment correlations and environmental-state distinguishability can lead to the same information flow from and toward the open system.
arXiv Detail & Related papers (2021-01-18T19:01:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.